Inequalities for Graph Eigenvalues

ZORAN STANIĆ

University of Belgrade, Serbia
Inequalities for graph eigenvalues / Zoran Stanic, Univerzitetu Beogradu, Serbia.

Inequalities for graph eigenvalues / Zoran Stanic, Univerzitetu Beogradu, Serbia.

1. Graph theory. 2. Eigenvalues I. Title.

QA166.873 2015
512.9436–dc23 2015011588

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents

Preface ix

1 Introduction 1
 1.1 Graph-theoretic notions 1
 1.1.1 Some graphs 5
 1.2 Spectra of graphs 8
 1.2.1 Spectrum of a graph 10
 1.2.2 Laplacian spectrum of a graph 12
 1.2.3 Signless Laplacian spectrum of a graph 14
 1.2.4 Relations between A, L, and Q 16
 1.3 Some more specific elements of the theory of graph spectra 18
 1.3.1 Eigenvalue interlacing 18
 1.3.2 Small perturbations 19
 1.3.3 Hoffman program 20
 1.3.4 Star complement technique 21
 1.4 A few more words 22
 1.4.1 Selected applications 22
 1.4.2 Spectral inequalities and extremal graph theory 26
 1.4.3 Computer help 27

2 Spectral radius 28
 2.1 General inequalities 28
 2.1.1 Walks in graphs 29
 2.1.2 Graph diameter 38
 2.1.3 Other inequalities 43
 2.2 Inequalities for spectral radius of particular types of graph 50
 2.2.1 Bipartite graphs 51
 2.2.2 Forbidden induced subgraphs 55
Contents

2.2.3 Nearly regular graphs 56
2.2.4 Nested graphs 58
2.3 Extremal graphs 63
2.3.1 Graphs whose spectral radius does not exceed $\frac{3\sqrt{2}}{2}$ 63
2.3.2 Order, size, and maximal spectral radius 66
2.3.3 Diameter and extremal spectral radius 68
2.3.4 Trees 71
2.3.5 Various results 74
2.3.6 Ordering graphs 76
Exercises 82
Notes 85

3 Least eigenvalue 87
3.1 Inequalities 87
3.1.1 Bounds in terms of order and size 88
3.1.2 Inequalities in terms of clique number, independence number or chromatic number 90
3.2 Graphs whose least eigenvalue is at least -2 92
3.3 Graphs with minimal least eigenvalue 95
3.3.1 Least eigenvalue under small graph perturbations 96
3.3.2 Graphs of fixed order and size 98
3.3.3 Graphs with prescribed properties 100
Exercises 102
Notes 103

4 Second largest eigenvalue 105
4.1 Inequalities 105
4.1.1 Regular graphs 106
4.1.2 Trees 113
4.2 Graphs with small second largest eigenvalue 115
4.2.1 Graphs with $\lambda_2 \leq \frac{1}{2}$ or $\lambda_2 \leq \sqrt{2} - 1$ 115
4.2.2 The golden section bound 117
4.2.3 Graphs whose second largest eigenvalue does not exceed 1 118
4.2.4 Trees with $\lambda_2 \leq \sqrt{2}$ 123
4.2.5 Notes on reflexive cacti 125
4.2.6 Regular graphs 126
4.3 Appendix 134
Exercises 143
Notes 144
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Other eigenvalues of the adjacency matrix</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Bounds for λ_i</td>
<td>146</td>
</tr>
<tr>
<td>5.2</td>
<td>Graphs with $\lambda_3 < 0$</td>
<td>149</td>
</tr>
<tr>
<td>5.3</td>
<td>Graphs G with $\lambda_{n-1}(G) = \lambda_{n-1}(\overline{G}) \geq -1$</td>
<td>150</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>6</td>
<td>Laplacian eigenvalues</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>General inequalities for L-spectral radius</td>
<td>155</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Upper bounds</td>
<td>156</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Lower bounds</td>
<td>161</td>
</tr>
<tr>
<td>6.2</td>
<td>Bounding L-spectral radius of particular types of graph</td>
<td>163</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Triangle-free graphs</td>
<td>163</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Triangulation graphs</td>
<td>165</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Bipartite graphs and trees</td>
<td>167</td>
</tr>
<tr>
<td>6.3</td>
<td>Graphs with small L-spectral radius</td>
<td>168</td>
</tr>
<tr>
<td>6.4</td>
<td>Graphs with maximal L-spectral radius</td>
<td>169</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Graphs with $\mu_1 = n$</td>
<td>169</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Various graphs</td>
<td>171</td>
</tr>
<tr>
<td>6.5</td>
<td>Ordering graphs by L-spectral radius</td>
<td>174</td>
</tr>
<tr>
<td>6.6</td>
<td>General inequalities for algebraic connectivity</td>
<td>176</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Upper and lower bounds</td>
<td>179</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Bounding graph invariants by algebraic connectivity</td>
<td>184</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Isoperimetric problem and graph expansion</td>
<td>185</td>
</tr>
<tr>
<td>6.7</td>
<td>Notes on algebraic connectivity of trees</td>
<td>188</td>
</tr>
<tr>
<td>6.8</td>
<td>Graphs with extremal algebraic connectivity</td>
<td>190</td>
</tr>
<tr>
<td>6.9</td>
<td>Ordering graphs by algebraic connectivity</td>
<td>193</td>
</tr>
<tr>
<td>6.10</td>
<td>Other L-eigenvalues</td>
<td>193</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Bounds for μ_i</td>
<td>194</td>
</tr>
<tr>
<td>6.10.2</td>
<td>Graphs with small μ_2 or μ_3</td>
<td>197</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>202</td>
</tr>
<tr>
<td>7</td>
<td>Signless Laplacian eigenvalues</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>General inequalities for Q-spectral radius</td>
<td>204</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Transferring upper bounds for μ_i</td>
<td>205</td>
</tr>
<tr>
<td>7.2</td>
<td>Bounds for Q-spectral radius of connected nested graphs</td>
<td>210</td>
</tr>
<tr>
<td>7.3</td>
<td>Graphs with small Q-spectral radius</td>
<td>213</td>
</tr>
<tr>
<td>7.4</td>
<td>Graphs with maximal Q-spectral radius</td>
<td>214</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Order, size, and maximal Q-spectral radius</td>
<td>214</td>
</tr>
</tbody>
</table>
Contents

7.4.2 Other results 216
7.5 Ordering graphs by Q-spectral radius 217
7.6 Least Q-eigenvalue 217
 7.6.1 Upper and lower bounds 218
 7.6.2 Small graph perturbations and graphs with extremal least Q-eigenvalue 221
7.7 Other Q-eigenvalues 222
Exercises 227
Notes 229

8 Inequalities for multiple eigenvalues 231
 8.1 Spectral spread 231
 8.1.1 Upper and lower bounds 231
 8.1.2 Q-Spread and L-spread 234
 8.1.3 Extremal graphs 234
 8.2 Spectral gap 236
 8.3 Inequalities of Nordhaus–Gaddum type 238
 8.4 Other inequalities that include two eigenvalues 240
 8.5 Graph energy 243
 8.6 Estrada index 245
Exercises 247
Notes 250

9 Other spectra of graphs 251
 9.1 Normalized L-eigenvalues 251
 9.1.1 Upper and lower bounds for $\hat{\mu}_1$ and $\hat{\mu}_{n-1}$ 253
 9.2 Seidel matrix eigenvalues 255
 9.3 Distance matrix eigenvalues 255
 9.3.1 Upper and lower bounds for $\hat{\delta}_1$ 257
 9.3.2 Graphs with small $\hat{\delta}_2$ or large $\hat{\delta}_n$ 260
Exercises 261
Notes 262
References 265
Inequalities 290
Index 294
Preface

This book has been written to be of use to mathematicians working in algebraic (or more precisely, spectral) graph theory. It also contains material that may be of interest to graduate students dealing with the same subject area. It is primarily a theoretical book with an indication of possible applications, and so it can be used by computer scientists, chemists, physicists, biologists, electrical engineers, and other scientists who are using the theory of graph spectra in their work.

The rapid development of the theory of graph spectra has caused the appearance of various inequalities involving spectral invariants of a graph. The main purpose of this book is to expose those results along with their proofs, discussions, comparisons, examples, and exercises. We also indicate some conjectures and open problems that might provide initiatives for further research.

The book is written to be as self-contained as possible, but we assume familiarity with linear algebra, graph theory, and particularly with the basic concepts of the theory of graph spectra. For those who need some additional material, we recommend the books [58, 98, 102, 170].

The graphs considered here are finite, simple (so without loops or multiple edges), and undirected, and the spectra considered in the largest part of the book are those of the adjacency matrix, Laplacian matrix, and signless Laplacian matrix of a graph. Although the results may be exposed in different ways, say from simple to more complicated, or in parts by following their historical appearance, here we follow the concept of from general to specific, that is, whenever possible, we give a general result, idea or method, and then its consequences or particular cases. This concept is applied in many places, see for example Theorem 2.2 and its consequences, the whole of Subsection 2.1.2 or Theorem 2.19 and its consequences.
Preface

We briefly outline the content of the book. In Chapter 1 we fix the terminology and notation, introduce the matrices associated with a graph, give the necessary results, select possible applications, and give more details about the content. In this respect, the last section of this chapter can be considered as an extension of this Preface. In Chapters 2–4 we consider inequalities that include the largest, the least, and the second largest eigenvalue of the adjacency matrix of a graph, respectively. The last section of Chapter 4 contains the lists of graphs obtained, together with some additional data. The remaining, less investigated, eigenvalues of the adjacency matrix are considered in Chapter 5. Chapters 6 and 7 deal with the inequalities for single eigenvalues of the Laplacian and signless Laplacian matrix. The inequalities that include multiple eigenvalues of any of three spectra considered before are singled out in Chapter 8. In Chapter 9 we consider the normalized Laplacian matrix, the Seidel matrix, and the distance matrix of a graph.

Each of Chapters 2–9 contains theoretical results, comments (including additional explanations, similar results or possible applications), comparisons of inequalities obtained, and numerical or other examples. Each of these chapters ends with exercises and notes. The exercises contain selected problems or a small number of the previous results whose proofs were omitted. The notes contain brief surveys of unmentioned results and directions to the corresponding literature.

Spectral inequalities occupy a central place in this book. Mostly, they are lower or upper bounds for selected eigenvalues. Apart from these, we consider some results written rather in the form of an inequality that bounds some structural invariant in terms of graph eigenvalues (and possibly some other quantities) or, as we have already said, inequalities that include more than one eigenvalue. All inequalities exposed are listed at the end of the book.

In an informal sense, extremal graph theory deals with the problem of determining extremal graphs for a given graph invariant in a set of graphs with prescribed properties. In the context of the theory of graph spectra, the invariant in question is a fixed eigenvalue of a matrix associated with a graph or a spectral invariant based on a number of graph eigenvalues (like the graph energy). Extremal graphs for a given spectral invariant in various sets of graphs are widely considered.

The terminology and notation are mainly taken from [98, 102], and they can also be found in similar literature. However, since there is some overlap in the wider notation used, we have made some small adjustments for this book only.

The author is grateful to Dragoš Cvetković and Vladimir Nikiforov, who
read the manuscript and gave valuable suggestions. In addition, these colleagues – together with Kinkar Chandra Das, Martin Hasler, and Slobodan K. Simić – gave permission to use some of their proofs with no significant change. Finally, Sarah Lewis helped with correcting language and technical errors, which is much appreciated.