Introduction to Dynamical Systems

This book provides a broad introduction to the subject of dynamical systems, suitable for a one- or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to such areas as number theory, data storage, and Internet search engines.

This book grew out of lecture notes from the graduate dynamical systems course at the University of Maryland, College Park, and reflects not only the tastes of the authors, but also to some extent the collective opinion of the Dynamics Group at the University of Maryland, which includes experts in virtually every major area of dynamical systems.

Michael Brin is Professor Emeritus of Mathematics at the University of Maryland. He is the author of over 30 papers, three of which appeared in the Annals of Mathematics, and he has lectured at conferences and universities around the world. His main research areas are dynamical systems and Riemannian geometry. In 2008, he established the Michael Brin Prize in Dynamical Systems.

Garrett Stuck is a former Professor of Mathematics at the University of Maryland and has held visiting positions at the Institut des Hautes Études Scientifiques in Paris and the Mathematical Sciences Research Institute in Berkeley. He has coauthored several textbooks, including *The Mathematica Primer*. Dr. Stuck is also a founder of Chalkfree, Inc. He currently works in the finance industry.

Introduction to Dynamical Systems

MICHAEL BRIN

GARRETT STUCK

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521808415

© Michael Brin and Garrett Stuck 2002

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002 Paperback edition 2015 with corrections

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Brin, Michael.
Introduction to dynamical systems / Michael Brin, Garrett Stuck.
p. cm.
Includes bibliographical references and index.
ISBN 0-521-80841-5
1. Differentiable dynamical systems. I. Stuck, Garrett, 1961– II. Title.
QA614.8.B75 2002
514'.74 - dc21 2002022281

ISBN 978-0-521-80841-5 Hardback ISBN 978-1-107-53894-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Eugenia, Pamela, Sergey, Sam, Jonathan, and Catherine for their patience and support. And in memory of our dear colleague Dan Rudolph.

Contents

Introduction			<i>page</i> xi
1	Examp	1	
	1.1	The notion of a dynamical system	1
	1.2	Circle rotations	3
	1.3	Expanding endomorphisms of the circle	5
	1.4	Shifts and subshifts	7
	1.5	Quadratic maps	9
	1.6	The Gauss transformation	11
	1.7	Hyperbolic toral automorphisms	14
	1.8	The horseshoe	16
	1.9	The solenoid	17
	1.10	Flows and differential equations	19
	1.11	Suspension and cross-section	22
	1.12	Chaos and Lyapunov exponents	23
	1.13	Attractors	25
2	Topolo	gical dynamics	29
	2.1	Limit sets and recurrence	29
	2.2	Topological transitivity	32
	2.3	Topological mixing	34
	2.4	Expansiveness	36
	2.5	Topological entropy	37
	2.6	Topological entropy for some examples	42
	2.7	Equicontinuity, distality and proximality	46
	2.8	Topological recurrence and Ramsey Theory	49
3	Symbo	lic dynamics	55
	3.1	Subshifts and codes	56
	3.2	Subshifts of finite type	57

vii

viii

Cambridge University Press
978-1-107-53894-8 - Introduction to Dynamical Systems
Michael Brin and Garrett Stuck
Frontmatter
More information

	3.3	The Perron–Frobenius Theorem	58
	3.4	Topological entropy and the zeta function of an SFT	61
	3.5	Strong shift equivalence and shift equivalence	63
	3.6	Substitutions	64
	3.7	Sofic shifts	67
	3.8	Data storage	68
4	Ergodi	c theory	70
	4.1	Measure theory preliminaries	70
	4.2	Recurrence	73
	4.3	Ergodicity and mixing	74
	4.4	Examples	78
	4.5	Ergodic theorems	81
	4.6	Invariant measures for continuous maps	86
	4.7	Unique ergodicity and Weyl's Theorem	88
	4.8	The Gauss transformation revisited	92
	4.9	Discrete spectrum	96
	4.10	Weak mixing	98
	4.11	Applications of measure-theoretic recurrence to	
		number theory	102
	4.12	Internet search	105
5	Hyperk	polic dynamics	108
	5.1	Expanding endomorphisms revisited	109
	5.2	Hyperbolic sets	110
	5.3	ϵ -orbits	112
	5.4	Invariant cones	116
	5.5	Stability of hyperbolic sets	119
	5.6	Stable and unstable manifolds	120
	5.7	Inclination Lemma	124
	5.8	Horseshoes and transverse homoclinic points	126
	5.9	Local product structure and locally maximal hyperbolic sets	130
	5.10	Anosov diffeomorphisms	132
	5.11	Axiom A and structural stability	135
	5.12	Markov partitions	137
	5.13	Appendix: Differentiable manifolds	140
6	Ergodi	city of Anosov diffeomorphisms	144
	6.1	Hölder continuity of the stable and unstable	
		distributions	144

Contents

Co	Contents		
	6.2	Absolute continuity of the stable and unstable	
		foliations	147
	6.3	Proof of ergodicity	154
7	Low d	imensional dynamics	157
	7.1	Circle homeomorphisms	157
	7.2	Circle diffeomorphisms	164
	7.3	The Sharkovsky Theorem	166
	7.4	Combinatorial theory of piecewise-monotone	
		mappings	174
	7.5	The Schwarzian derivative	182
	7.6	Real quadratic maps	186
	7.7	Bifurcations of periodic points	187
	7.8	The Feigenbaum phenomenon	193
8	Complex dynamics		196
	8.1	Complex analysis on the Riemann sphere	196
	8.2	Examples	199
	8.3	Normal families	202
	8.4	Periodic points	203
	8.5	The Julia set	205
	8.6	The Mandelbrot set	211
9	Measu	ire theoretic entropy	213
	9.1	Entropy of a partition	213
	9.2	Conditional entropy	216
	9.3	Entropy of a measure-preserving transformation	218
	9.4	Examples of entropy calculation	223
	9.5	Variational principle	226
Bibliography		230	
Ind	Index		237

Introduction

The purpose of this book is to provide a broad and general introduction to the subject of dynamical systems, suitable for a one- or two-semester graduate course. We introduce the principal themes of dynamical systems both through examples and by explaining and proving fundamental and accessible results. We make no attempt to be exhaustive in our treatment of any particular area.

This book grew out of lecture notes from the graduate dynamical systems course at the University of Maryland, College Park. The choice of topics reflects not only the tastes of the authors, but also to a large extent the collective opinion of the Dynamics Group at the University of Maryland, which includes experts in virtually every major area of dynamical systems.

Early versions of this book have been used by several instructors at Maryland, the University of Bonn, and Pennsylvania State University. Experience has shown that, with minor omissions, the first five chapters of the book can be covered in a one-semester course. Instructors who wish to cover a different set of topics may safely omit some of the sections at the end of Chapter 1, §§2.7–2.8, §§3.5–3.8, and §§4.8–4.12, and then choose from topics in later chapters. Examples from Chapter 1 are used throughout the book. Chapter 6 depends on Chapter 5, but the other chapters are essentially independent. Every section ends with exercises (starred exercises are the most difficult).

The exposition of most of the concepts and results in this book have been refined over the years by various authors. Since most of these ideas have appeared so often and in so many variants in the literature, we have not attempted to identify the original sources. In many cases, we followed the written exposition from specific sources listed in the bibliography. These sources cover particular topics in greater depth than we do here, and we recommend them for further reading. We also benefited from the advice and

xii

Introduction

guidance of a number of specialists, including Joe Auslander, Werner Ballmann, Ken Berg, Mike Boyle, Boris Hasselblatt, Michael Jakobson, Anatole Katok, Michal Misiurewicz, and Dan Rudolph. We thank them for their contributions. We are especially grateful to Vitaly Bergelson for his contributions to the treatment of applications of topological dynamics and ergodic theory to combinatorial number theory. We thank the students who used early versions of this book in our classes, and who found many typos, errors, and omissions. Thanks, also, to the colleagues who used the hardcover edition of this text, and whose comments and corrections have been included in this new paperback edition.