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Gap distributions and homogeneous dynamics

Jayadev S. Athreya1

Abstract

We survey the use of dynamics of SL(2,R)-actions to understand gap
distributions for various sequences of subsets of [0, 1), particularly those
arising from special trajectories of various two-dimensional dynamical
systems. We state and prove an abstract theorem that gives a unified
explanation for some of the examples we present.

1 Introduction

The study of the distribution of gaps in sequences is a subject that arises in many
different contexts and has connections with many different areas of mathemat-
ics, including number theory, probability theory, and spectral analysis. In this
paper, we study gap distributions from the perspective of dynamics and geom-
etry, exploring examples connected with the dynamics of SL(2,R)-actions on
moduli spaces of geometric objects, in particular the space of lattices and the
space of translation surfaces.

The inspiration for this article is the a quote from the beautiful paper of
Elkies-McMullen [8], referring to their explicit computation of the gap distri-
bution of the sequence of fractional parts of

√
n, using the dynamics of the

SL(2,R)-action on the space of affine unimodular lattices in R2.

“. . . the uniform distribution of lattices explains the exotic distribution of gaps.”

Indeed, the main results of our paper, Theorem 7, Theorem 10, and
Theorem 11, give unified explanations of several examples of ‘exotic’ gap

1 J.S.A. partially supported by NSF CAREER grant DMS 1351853, NSF grant DMS 1069153,
and grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And
Representation varieties” (the GEAR Network).
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2 Jayadev S. Athreya

distributions via uniform distribution on various moduli spaces of geometric
objects.

1.1 Equidistribution, randomness, and gap distributions

Suppose that for each positive integer k, we are given a finite list of points
F (k) ⊂ [0, 1), where by a list, we mean a finite non-decreasing sequence of
real numbers where Nk denotes the number of terms in the kth sequence F (k).
We write

F (k) = {F (0)
k ≤ F (1)

k ≤ . . . F (Nk)
k

}
,

and we assumeNk →∞ as k→∞. In many situations, we are interested in the
‘randomness’ of the sequence of lists {F (k)}∞k=1. A first test of ‘randomness’
is whether the lists F (k) uniformly distribute in [0, 1), that is the measures
�k = 1

Nk

∑Nk
j=0 δF (j )

k
converge weak-* to Lebesgue measure, i.e., for any 0 ≤

a ≤ b ≤ 1,

lim
k→∞

�k(a, b) = b − a. (1)

A more refined question (not necessarily dependent on (1)) is to examine
the distribution of gaps for the sequences F (k). That is, form the associated
normalized gap sets

G(k) := {Nk(F (i+1)
k − F (i)

k

)
: 0 ≤ i < Nk

}
, (2)

and given 0 ≤ a < b ≤ ∞, what is the behavior of

lim
k→∞

|G(k) ∩ (a, b)|
Nk

? (3)

If the sequence F (k) is ‘truly random’, that is, given by

F (k) = {X(0) ≤ X(1) ≤ . . . ≤ X(k)},
where the {X(i)} are the order statistics generated by independent, identically
distributed (i.i.d.) uniform [0, 1) random variables {Xn}∞n=0, it is an exercise
in probability theory to show that the gap distribution converges to a Poisson
process of intensity 1. Precisely, for any t > 0,

lim
k→∞

|G(k) ∩ (t,∞)|
Nk

= e−t (4)

However, many sequences that arise ‘in nature’ satisfy an equidistribution
property but do not have Poissonian gaps. Following [8], we call such gap
distributions exotic. In this paper, we discuss in detail some examples of exotic
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Gap distributions and homogeneous dynamics 3

gap distributions, which, moreover, can be calculated (or at least shown to exist)
using methods arising from homogeneous dynamics, in particular dynamics of
SL(2,R) actions on appropriate moduli spaces. In particular, the results we
discuss share a similar philosophy; the sets F (k) are associated to sets of angles
or slopes of a discrete set of vectors in R2, and the gap distribution is studied by
appropriate linear renormalizations, which can be viewed as part of an SL(2,R)
action on an appropriate moduli space of geometric objects. The main novelty
of this paper is the statement of three meta-theorems (Theorem 7, Theorem 10,
and Theorem 11), which give unified explanations of some of these examples
by linking them to uniform distribution on various moduli spaces and which
we expect can be used for future applications.

1.2 Organization of the paper

This paper is organized as follows: in the remainder of this introduction we
state results about our main (previously studied) examples: the Farey sequences
F(Q) (Section 1.4); slopes for lattice vectors (Section 1.4); and saddle connec-
tion directions for translation surfaces (Section 1.5). We also briefly discuss the
space of affine lattices and {{√n}}n≥1 in Section 1.6. In Section 2, we state the
main results Theorem 7, Theorem 10, and Theorem 11. We describe how to
use these results to explain our examples in Section 3-Section 4, and prove the
theorems in Section 5. Finally, in Section 6, we pose some natural questions
suggested by our approach.
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Figure 1 The triangle T4. Primitive integer vectors are given by dashed lines, and
are labeled by their slopes.

1.4 Farey sequences

Consider the integer lattice Z2. If we imagine an observer sitting at the origin
0, the ‘visible’ points in Z2 correspond to the set of primitive vectors, that
is, integer vectors which are not integer multiples of other integer vectors. If
we consider slopes of vectors (as opposed to angles), it is natural to consider
the set of vectors with slopes in [0, 1]. The set of slopes of (primitive) integer
vectors with horizontal component at mostQ intersected with the interval [0, 1]
gives the Farey sequence of level Q. More simply, F(Q) consists of the set of
fractions in between 0 and 1 with denominator at most Q. We write

F(Q) :=
{
γ0 = 0

1
< γ1 = 1

Q
< γ2 . . . < γi = pi

qi
< . . . γN = 1

1

}
Here, N = N (Q) =∑Q

i=1 ϕ(i) is the cardinality of F(Q). By the above dis-

cussion, these correspond to the slopes of primitive integer vectors
( qi
pi

)
in

the (closed) triangle TQ with vertices at (0, 0), (Q, 0), and (Q,Q). That is, it
is bounded above by the line {y = x}, below by the x-axis, and on the right by
the line {x = Q}. The triangle T4 is shown in Figure 1.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-52900-7 - Geometry, Topology, and Dynamics in Negative Curvature
Edited by C. S. Aravinda, F. T. Farrell and J.- F. Lafont
Excerpt
More information

http://www.cambridge.org/9781107529007
http://www.cambridge.org
http://www.cambridge.org


Gap distributions and homogeneous dynamics 5
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Figure 2 The region Aa,b in inside the region �.

The sequences F(Q) equidistribute in [0, 1] (by, for example, Weyl’s cri-
terion [22]). We denote by G(Q) the set of normalized gaps between Farey
fractions, that is,

G(Q) =
{
N (Q)(γi+1 − γi) = N (Q)

qiqi+1
: 0 ≤ i < N (Q)

}
.

The limiting distribution for G(Q) is given by the following beautiful theorem
of R. R. Hall, and illustrated in Figures 2 and 3 2. Let

� := {(u, v) ∈ [0, 1]2 : u+ v > 1},

2 Color versions of the Figures in this paper are available on the author’s webpage.
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6 Jayadev S. Athreya

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

Figure 3 The limiting distribution of gaps for Farey fractions and, (appropriately
rescaled) lattice slopes.

and for 0 ≤ a < b ≤ ∞, let

Aa,b =
{
(u, v) ∈ � : b−1 < uv < a−1

}
, (5)

and set Ãa,b := Aπ2
3 a,

π2
3 b

.

Theorem 1 [11, R.R.Hall] Fix 0 ≤ a < b <∞. Then

lim
Q→∞

|G(Q) ∩ (a, b)|
N (Q)

= 2|Ãa,b|.

Differentiating the cumulative distribution function

FHall(t) := |Ã0,t |,
one can compute the probability distribution function PHall(t) so that∫ b

a

PHall(t)dt := 2|Ãa,b|.

We call this distribution (and any scalings) Hall’s distribution. The graph of
PHall(t) is given in Figure 3, which is drawn from [6]. The points of non-
differentiability 3

π2 and 12
π2 correspond to the transitions when the hyperbola{

xy = 3
π2 t

−1
}

enters the region�
(
t = 3

π2

)
and when it hits the line x + y = 1(

t = 12
π2

)
. In Section 3, we will, following [4], give a proof of Hall’s theorem

inspired by the work of F. Boca, C. Cobeli, and A. Zaharescu [5]. They created a
map T : �→ �, now known as the BCZ map, and used equidistribution prop-
erties of periodic orbits of this map to obtain many statistical results on F(Q)
and G(Q). In [4], the author and Y. Cheung showed that these results could be
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Gap distributions and homogeneous dynamics 7

obtained by studying the horocycle flow on the spaceX2 = SL(2,R)/SL(2,Z)
of unimodular lattices in R2.

Geometry of Numbers
One can also study the behavior of an arbitrary unimodular lattice 	. Let
	 ⊂ R2 be a unimodular lattice, and suppose	 does not have vertical vectors.
Let {s1 < s2 < . . . < sn < . . .} denote the slopes of the vectors (written in
increasing order) in the vertical strip V1 = {(u, v)T : u ∈ (0, 1], v > 0}. Here,

and below, we use (u, v)T to denote the column vector
(u
v

)
, as our matrices

act on the left. Let

GN (	) = {sn+1 − sn : 0 ≤ n ≤ N}
denote the set of gaps in this sequence. Note that in this setting, we do not need
to normalize, as our sequence is not contained in [0, 1). Then we have that the
limiting distribution of GN is also given by Hall’s distribution. That is:

Theorem 2 [4] Let 0 ≤ a < b ≤ ∞. Then

lim
N→∞

1

N
|GN (	) ∩ (a, b)| = 2|Aa,b|.

1.5 Saddle Connections

We saw above that the Farey sequence could be interpreted geometrically
as slopes of primitive integer vectors in R2. Primitive integer vectors also
correspond to (parallel families) of closed geodesics on the torus R2/Z2, which
can also be interpreted as closed billiard trajectories in the square [0, 1/2]2.
A natural generalization would be to try and understand similar families of
trajectories for higher-genus surfaces, and/or for billiards in more complex
polygons More precisely, let P be a Euclidean polygon with angles in πQ. The
billiard dynamical system on P is given the (frictionless) motion of a point
mass at unit speed with elastic collisions with the sides, satisfying the law
of geometric optics: angle of incidence = angle of reflection. A generalized
diagonal for the polygon P is a trajectory for the billiard flow that starts at
one vertex of P and ends at another vertex. Since the group �P generated by
reflections in the sides of P is finite, the angle of a trajectory is well defined in
S1 ∼= S1/�P . The natural gap distribution question that arises in this context
is:

Question 3 What is the limiting distribution of the gaps between angles of
generalized diagonals (normalized in terms of the length)?
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8 Jayadev S. Athreya

More generally, one can ask about the limiting distribution for gaps for sad-
dle connections) in the more general setting of translation surfaces. A translation
surface is a pair (M,ω), where M is a Riemann surface and ω a holomorphic
1-form.

A saddle connection is a geodesic γ in the flat metric induced by ω, con-
necting two zeros of ω. To each saddle connection γ associate the holonomy
vector vγ =

∫
γ
ω ∈ C. The set of holonomy vectors	sc(ω) is a discrete subset

of C ∼= R2, and varies equivariantly under the natural SL(2,R) action on the
set of translation surfaces. Motivated by such concerns, and inspired by the
work of Marklof-Strombergsson [14], the author and J. Chaika [2] studied the
gap distribution for saddle connection directions. The relationship between flat
surfaces and billiards in polygons is given by a natural unfolding procedure,
which associates to each (rational) polygon P a translation surface (XP ,ωP ).
The main result of [2] used the dynamics of the SL(2,R) action on the moduli
space �g of genus g translation surfaces to show that generically, a limiting
distribution exists.

More precisely, given R > 0, let

FωR := {arg(v) : v ∈ 	ω ∩ B(0, R)} (6)

denote the set of directions of saddle connections of length at most R.
Masur [16] showed that the counting function N (ω,R) := |Fω(R)| grows
quadratically in R for any ω. Denote the associated normalized gap set by
Gω(R).

Theorem 4 ([2, Theorem 1.1]) For almost every (with respect to Lebesgue
measure on �g) translation surface ω, there is a limiting distribution for the
gap set Gω(R). Moreover, this distribution has support at 0, that is, for almost
every ω ∈ �g , and for any ε > 0,

lim
R→∞

|Gω(R) ∩ (0, ε)|
N (ω,R)

> 0. (7)

Lattice Surfaces
The support at 0 in Theorem 4 is in contrast to the setting of the torus, where,
as seen in Figure 3, there a gap between 0 and 3/π2. This gap at 0 is, in some
sense, due to the symmetry of the torus- if we think of the SL(2,R) action on
the moduli space X2 of flat tori, the stabilizer of any point is (conjugate to)
SL(2,Z). More generally, It was shown in [2] that if ω is a lattice surface (i.e.,
the stabilizer of the flat surface ω under the SL(2,R) action is a lattice) that
the limiting distribution for gaps has no support at 0.
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Figure 4 The Golden L. The long sides of the L each have length 1+√5
2 .

While it was in principle possible to compute the limiting distribution using
the techniques in [2], the more geometric nature of the techniques in [4] and
the use of horocycle flows on moduli spaces can be generalized to the setting
of lattice surfaces to give a roadmap for explicitly calculating the limiting
distribution of gaps. In joint work [3] with J. Chaika and S. Lelievre, we proved
Theorem 5 on the gap distribution for the golden L, which is a surface of genus
2 with one double zero, displayed in Figure 4.

Theorem 5 [3] There is an explicit limiting gap distribution for the set of slopes
(equivalently, angles) for saddle connections on the golden L. The probability
distribution function is differentiable except at a set of eight points.

Remark: The limiting and empirical distributions are shown in Figure 5, drawn
from [3]. We refer the reader to [3] for the precise formulas for the limiting
distribution.

1.6 Visible affine lattice points

Another natural generalization of the Farey sequence is to consider affine
lattices, that is, translates of lattices by some fixed vector. We write

	 = MZ2 + v,
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Figure 5 The limiting and empirical distributions for gaps of saddle connection
slopes on the golden L.

where M ∈ SL(2,R) and v ∈ R2 (really v is well-defined up to the lattice
MZ2, so we think of it as an element of the torus R2/MZ2). Marklof-
Strombergsson [14] used dynamics on the space of affine lattices X̃2 =
SL(2,R) � R2/SL(2,Z) � Z2 to study the gap distribution for the angles of
visible affine lattice points. They in fact considered much more general prob-
lems, studying the distribution of visible affine lattice points in higher dimen-
sions, but for the purposes of this paper, we focus on their two-dimensional
results.
Consider the set of angles of lattice points of length at most R, that is,

F	(R) := {arg w : w ∈ 	 ∩ B(0, R)}.

To calculate the associated gap distribution P	, the key is to estimate the
probability of finding multiple lattice points in ‘thinning’ wedges. Given σ >
0, θ ∈ [0, 2π ) and R > 0 consider the wedge

AθR(σ ) := {w ∈ R2 : w ∈ B(0, R), arg(w) ∈ (θ − σR−2, θ + σR−2)},

shown in Figure 6. Here, the factor of R−2 corresponds to the normaliz-
ing factor 1

N
above, since the cardinality of F	(R) is on the order of R2.

The gap distribution will be given by (the second derivative) of the limiting
probability

p	,0(σ ) = lim
R→∞

λ(θ : AθR(σ ) ∩	 = ∅)

that this wedge does not affine lattice points. This follows from the fact that
if we let P	(t) denote the probability distribution function of the limiting gap
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