Computational Modeling of Cognition and Behavior

Computational modelling is now ubiquitous in psychology, and researchers who are not modellers may find it increasingly difficult to follow the theoretical developments in their field. This book presents an integrated framework for the development and application of models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.

Both the development of models and key features of any model are covered, as are the applications of models in a variety of domains across the behavioural sciences. A number of chapters are devoted to fitting models using maximum likelihood and Bayesian estimation, including fitting hierarchical and mixture models. Model comparison is described as a core philosophy of scientific inference, and the use of models to understand theories and advance scientific discourse is explained.

Simon Farrell is a professor in the School of Psychological Science at the University of Western Australia. He uses computational modelling and experiments to understand memory, judgement, choice, and the role of memory in decision-making. He is the co-author of *Computational Modeling in Cognition: Principles and Practice* (2011) and has published numerous papers on the application of models to psychological data. Simon was Associate Editor of the *Journal of Memory and Language* (2009–11) and the *Quarterly Journal of Experimental Psychology* (2011–16). In 2009 Farrell was awarded the Bertelson Award by the European Society for Cognitive Psychology for his outstanding early career contribution to European Cognitive Psychology.

Stephan Lewandowsky is a professor of cognitive science in the School of Experimental Psychology at the University of Bristol. He was awarded a Discovery Outstanding Researcher Award from the Australian Research Council in 2011 and received a Wolfson Research Fellowship from the Royal Society upon moving to Bristol in 2013. He was appointed a Fellow of the Academy of Social Sciences in 2017. His research examines people's memory and decision-making, with an emphasis on how people update information in memory. He has published over 200 scholarly articles and books, including numerous papers on how people respond to corrections of misinformation and what determines people's acceptance of scientific findings.

Computational Modeling of Cognition and Behavior

SIMON FARRELL University of Western Australia, Perth

· · · **,** · · · · · , · · , · · ,

STEPHAN LEWANDOWSKY

University of Bristol

© in this web service Cambridge University Press

Cambridge University Press 978-1-107-52561-0 — Computational Modeling of Cognition and Behavior Simon Farrell , Stephan Lewandowsky Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107109995 DOI: 10.1017/9781316272503

© Simon Farrell and Stephan Lewandowsky 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018 Reprinted 2018

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Farrell, Simon, 1976– author. | Lewandowsky, Stephan, 1958– author. Title: Computational modeling of cognition and behavior / Simon Farrell, University of Western Australia, Perth, Stephan Lewandowsky, University of Bristol. Description: New York, NY : Cambridge University Press, 2018. Identifiers: LCCN 2017025806 | ISBN 9781107109995 (Hardback) | ISBN 9781107525610 (paperback) Subjects: LCSH: Cognition–Mathematical models. | Psychology–Mathematical models. Classification: LCC BF311 .F358 2018 | DDC 153.01/5118–dc23 LC record available at https://lccn.loc.gov/2017025806

ISBN 978-1-107-10999-5 Hardback ISBN 978-1-107-52561-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Jodi, Alec, and Sylvie, with love (S.F.) To Annie and the tribe (Ben, Rachel, Thomas, Jess, and Zachary) with love (S.L.)

Contents

	List	of Illustrations	<i>page</i> xiii
	List	of Tables	xviii
	List	of Contributors	xix
	Pref	face	xxi
Part I	Introduc	tion to Modeling	1
1	Intro	oduction	3
	1.1	Models and Theories in Science	3
	1.2	Quantitative Modeling in Cognition	6
		1.2.1 Models and Data	6
		1.2.2 Data Description	9
		1.2.3 Cognitive Process Models	13
	1.3	Potential Problems: Scope and Falsifiability	17
	1.4	Modeling as a "Cognitive Aid" for the Scientist	20
	1.5	In Vivo	22
2	Fron	n Words to Models	24
	2.1	Response Times in Speeded-Choice Tasks	24
	2.2	Building a Simulation	26
		2.2.1 Getting Started: R and RStudio	26
		2.2.2 The Random-Walk Model	27
		2.2.3 Intuition vs. Computation: Exploring the Predictions of a	
		Random Walk	31
		2.2.4 Trial-to-Trial Variability in the Random-Walk Model	33
		2.2.5 A Family of Possible Sequential-Sampling Models	37
	2.3	The Basic Toolkit	38
		2.3.1 Parameters	38
		2.3.2 Connecting Model and Data	40
	2.4	In Vivo	40

viii

Contents

Part II	Parame	ter Estimation	45
3	Paci	ic Parameter Estimation Techniques	47
3		Discrepancy Function	47
	5.1	3.1.1 Root Mean Squared Deviation (RMSD)	47
		3.1.2 Chi-Squared (χ^2)	40
	3 2	Fitting Models to Data: Parameter Estimation Techniques	49 50
		Least-Squares Estimation in a Familiar Context	50
	5.5	3.3.1 Visualizing Modeling	51
		3.3.2 Estimating Regression Parameters	53
	34	Inside the Box: Parameter Estimation Techniques	55
	5.4	3.4.1 Simplex	57
		3.4.2 Simulated Annealing	61
		3.4.3 Relative Merits of Parameter Estimation Techniques	64
	35	Variability in Parameter Estimates	65
	5.5	3.5.1 Bootstrapping	65
	3.6	In Vivo	70
4	Мах	imum Likelihood Parameter Estimation	72
	4.1	Basics of Probabilities	72
		4.1.1 Defining Probability	72
		4.1.2 Properties of Probabilities	73
		4.1.3 Probability Functions	75
	4.2	What Is a Likelihood?	80
	4.3	Defining a Probability Distribution	85
		4.3.1 Probability Functions Specified by the Psychological Model	86
		4.3.2 Probability Functions via Data Models	86
		4.3.3 Two Types of Probability Functions	91
		4.3.4 Extending the Data Model	92
		4.3.5 Extension to Multiple Data Points and Multiple Parameters	93
	4.4	Finding the Maximum Likelihood	95
	4.5	Properties of Maximum Likelihood Estimators	101
	4.6	In Vivo	103
5	Com	ibining Information from Multiple Participants	105
	5.1	It Matters How You Combine Data from Multiple Units	105
	5.2	Implications of Averaging	106
		Fitting Aggregate Data	109
		Fitting Individual Participants	111
	5.5	Fitting Subgroups of Data and Individual Differences	113
		5.5.1 Mixture Modeling	113
		5.5.2 K-Means Clustering	118
		5.5.3 Modeling Individual Differences	121
	5.6	In Vivo	123

		Contents	ix
6	Baye	esian Parameter Estimation	126
	6.1	What Is Bayesian Inference?	126
		6.1.1 From Conditional Probabilities to Bayes Theorem	126
		6.1.2 Marginalizing Probabilities	129
	6.2		130
		6.2.1 The Likelihood Function	130
		6.2.2 The Prior Distribution	131
		6.2.3 The Evidence or Marginal Likelihood	134
		6.2.4 The Posterior Distribution	135
		6.2.5 Estimating the Bias of a Coin	136
		6.2.6 Summary	139
	6.3	Determining the Prior Distributions of Parameters	139
		6.3.1 Non-Informative Priors	139
		6.3.2 Reference Priors	142
	6.4	In Vivo	143
7	Baye	esian Parameter Estimation	146
	7.1	Markov Chain Monte Carlo Methods	146
		7.1.1 The Metropolis-Hastings Algorithm for MCMC	147
		7.1.2 Estimating Multiple Parameters	153
	7.2	Problems Associated with MCMC Sampling	160
		7.2.1 Convergence of MCMC Chains	161
		7.2.2 Autocorrelation in MCMC Chains	162
		7.2.3 Outlook	162
	7.3	Approximate Bayesian Computation: A Likelihood-Free Method	163
		7.3.1 Likelihoods That Cannot be Computed	163
		7.3.2 From Simulations to Estimates of the Posterior	164
		7.3.3 An Example: ABC in Action	166
	7.4	In Vivo	170
8	Baye	esian Parameter Estimation	172
	8.1	Gibbs Sampling	172
		8.1.1 A Bivariate Example of Gibbs Sampling	173
		8.1.2 Gibbs vs. Metropolis-Hastings Sampling	176
		8.1.3 Gibbs Sampling of Multivariate Spaces	176
	8.2	JAGS: An Introduction	177
		8.2.1 Installing JAGS	177
		8.2.2 Scripting for JAGS	177
	8.3	JAGS: Revisiting Some Known Models and Pushing Their Boundaries	182
		8.3.1 Bayesian Modeling of Signal-Detection Theory	182
		8.3.2 A Bayesian Approach to Multinomial Tree Models:	
		The High-Threshold Model	186
		8.3.3 A Bayesian Approach to Multinomial Tree Models	190
		8.3.4 Summary	198
	8.4	In Vivo	198

x	Con	tents	
9	MI+	ilevel or Hierarchical Modeling	203
5	9.1	Conceptualizing Hierarchical Modeling	203
		Bayesian Hierarchical Modeling	203
	9.2	9.2.1 Graphical Models	204
		9.2.2 Hierarchical Modeling of Signal-Detection Performance	207
		9.2.3 Hierarchical Modeling of Forgetting	207
		9.2.4 Hierarchical Modeling of Inter-Temporal Preferences	218
		9.2.5 Summary	226
	9.3	Hierarchical Maximum Likelihood Modeling	228
		9.3.1 Hierarchical Maximum Likelihood Model of Signal Detection	228
	9.4	Recommendations	233
	9.5	In Vivo	234
Part III	Model (Comparison	239
10		-	241
10		el Comparison	241 241
	10.1	Psychological Data and the Very Bad Good Fit 10.1.1 Model Complexity and Over-Fitting	241
	10.2	Model Comparison	243
		The Likelihood Ratio Test	240 249
		Akaike's Information Criterion	249
		Other Methods for Calculating Complexity and Comparing Models	250
	10.5	10.5.1 Cross-Validation	261
		10.5.2 Minimum Description Length	262
		10.5.3 Normalized Maximum Likelihood	262
	10.6	Parameter Identifiability and Model Testability	263 264
	10.0	10.6.1 Identifiability	264
		10.6.2 Testability	269
	10.7	Conclusions	270
		In Vivo	271
11	Baye	esian Model Comparison Using Bayes Factors	273
	11.1	Marginal Likelihoods and Bayes Factors	273
	11.2	Methods for Obtaining the Marginal Likelihood	277
		11.2.1 Numerical Integration	278
		11.2.2 Simple Monte Carlo Integration and Importance Sampling	280
		11.2.3 The Savage-Dickey Ratio	284
		11.2.4 Transdimensional Markov Chain Monte Carlo	287
		11.2.5 Laplace Approximation	294
		11.2.6 Bayesian Information Criterion	297
		Bayes Factors for Hierarchical Models	301
		The Importance of Priors	303
		Conclusions	306
	11.6	In Vivo	306

	Contents	xi
Part IV	Models in Psychology	309
12	Using Models in Psychology	311
	12.1 Broad Overview of the Steps in Modeling	311
	12.2 Drawing Conclusions from Models	312
	12.2.1 Model Exploration	312
	12.2.2 Analyzing the Model	314
	12.2.3 Learning from Parameter Estimates	315
	12.2.4 Sufficiency of a Model	316
	12.2.5 Model Necessity	318
	12.2.6 Verisimilitude vs. Truth	323
	12.3 Models as Tools for Communication and Shared Understanding	324
	12.4 Good Practices to Enhance Understanding and Reproducibility	326
	12.4.1 Use Plain Text Wherever Possible	326
	12.4.2 Use Sensible Variable and Function Names	327
	12.4.3 Use the Debugger	327
	12.4.4 Commenting	328
	12.4.5 Version Control	328
	12.4.6 Sharing Code and Reproducibility	329
	12.4.7 Notebooks and Other Tools	330
	12.4.8 Enhancing Reproducibility and Runnability	331
	12.5 Summary	332
	12.6 In Vivo	332
13	Neural Network Models	334
	13.1 Hebbian Models	334
	13.1.1 The Hebbian Associator	334
	13.1.2 Hebbian Models as Matrix Algebra	339
	13.1.3 Describing Networks Using Matrix Algebra	348
	13.1.4 The Auto-Associator	349
	13.1.5 Limitations of Hebbian Models	356
	13.2 Backpropagation	356
	13.2.1 Learning and the Backpropagation of Error	360
	13.2.2 Applications and Criticisms of Backpropagation in Psychology	364
	13.3 Final Comments on Neural Networks	365
	13.4 In Vivo	366
14	Models of Choice Response Time	369
	14.1 Ratcliff's Diffusion Model	369
	14.1.1 Fitting the Diffusion Model	371
	14.1.2 Interpreting the Diffusion Model	383
	14.1.3 Falsifiability of the Diffusion Model	385
	14.2 Ballistic Accumulator Models	386
	14.2.1 Linear Ballistic Accumulator	386
	14.2.2 Fitting the LBA	388

Cambridge University Press 978-1-107-52561-0 — Computational Modeling of Cognition and Behavior Simon Farrell , Stephan Lewandowsky Frontmatter <u>More Information</u>

xii	Contents	
	14.3 Summary	39
	14.4 Current Issues and Outlook	392
	14.5 In Vivo	39:
15	Models in Neuroscience	39:
	15.1 Methods for Relating Neural and Behavioral Data	39
	15.2 Reinforcement Learning Models	398
	15.2.1 Theories of Reinforcement Learning	398
	15.2.2 Neuroscience of Reinforcement Learning	404
	15.3 Neural Correlates of Decision-Making	410
	15.3.1 Rise-to-Threshold Models of Saccadic Decision-Making	410
	15.3.2 Relating Model Parameters to the BOLD Response	41
	15.3.3 Accounting for Response Time Variability	41.
	15.3.4 Using Spike Trains as Model Input	41:
	15.3.5 Jointly Fitting Behavioral and Neural Data	41′
	15.4 Conclusions	420
	15.5 In Vivo	42
Appendix	A Greek Symbols	424
Appendix	B Mathematical Terminology	42:
	References	42
	Index	45

Illustrations

1.1	An example of data that defy easy description and explanation without a	
	quantitative model.	4
1.2	The geocentric model of the solar system developed by Ptolemy.	5
1.3	Observed recognition scores as a function of observed classification confidence	
	for the same stimuli (each number identifies a unique stimulus).	7
1.4	Observed and predicted classification (left panel) and recognition (right panel).	8
1.5	Sample power law learning function (solid line) and alternative exponential	
	function (dashed line) fitted to the same data.	11
1.6	The representational assumptions underlying GCM.	14
1.7	The effects of distance on activation in the GCM.	15
1.8	Stimuli used in a classification experiment by Nosofsky (1991).	16
1.9	Four possible hypothetical relationships between theory and data involving	
	two measures of behavior (A and B).	19
2.1	Graphical illustration of a simple random-walk model.	25
2.2	Predicted decision-time distributions from the simple random-walk model	
	when the stimulus is non-informative.	31
2.3	Predicted decision-time distributions from the simple random-walk model	
	with a positive drift rate (set to 0.03 for this example).	32
2.4	Predicted decision-time distributions from the modified random-walk model	
	with a positive drift rate (set to 0.035 for this example) and trial-to-trial	
	variability in the starting point (set to 0.8).	35
2.5	Predicted decision-time distributions from the modified random-walk model	
	with a positive drift rate (set to 0.03 for this example) and trial-to-trial	
	variability in the drift rate (set to 0.025).	36
2.6	Overview of the family of sequential-sampling models.	38
2.7	The basic idea: We seek to connect model predictions to the data from our	
	experiment(s).	40
3.1	Data (plotting symbols) from Experiment 1 of Carpenter et al. (2008)	
	(test/study condition) with the best-fitting predictions (solid line) of a power	
	function.	48
3.2	An "error surface" for a linear regression model given by $y = Xb + e$.	51
3.3	Two snapshots during parameter estimation of a simple regression line.	56
3.4	Two-dimensional projection of the error surface in Figure 3.2.	58

Xİİİ

Cambridge University Press 978-1-107-52561-0 — Computational Modeling of Cognition and Behavior Simon Farrell , Stephan Lewandowsky Frontmatter <u>More Information</u>

xiv	List of Illustrations	
3.5	Probability with which a worse fit is accepted during simulated annealing as a	(2)
26	function of the increase in discrepancy (Δf) and the temperature parameter (T) . The process of obtaining parameter estimates for bootstrap samples.	63 66
3.6 3.7	Histograms of parameter estimates obtained by the bootstrap procedure, where	00
5.7	data are generated from the model and the model is fit to the generated	
	bootstrap samples.	68
4.1	An example probability mass function: the probability of responding A to	00
	exactly N_A out of $N=10$ items in a categorization task, where the probability of	
	an A response to any particular item is $P_A = 0.7$.	76
4.2	An example cumulative distribution function (CDF).	77
4.3	An example probability density function (PDF).	78
4.4	Reading off the probability of discrete data (top panel) or the probability	
	density for continuous data (bottom panel).	81
4.5	Distinguishing between probabilities and likelihoods.	83
4.6	The probability of a data point under the binomial model, as a function of the	
	model parameter P_A and the data point N_A , the number of A responses in a	
	categorization task.	84
4.7	Different ways of generating a predicted probability function, depending on	0.1
4.0	the nature of the model and the dependent variable.	91
4.8	The joint likelihood function for the Wald parameters <i>m</i> and <i>a</i> given the data set $10 \le 0.7 \times 0.01$	04
4.9	$\mathbf{t} = [0.6 \ 0.7 \ 0.9].$	94
4.9	A likelihood function (left panel), and the corresponding log-likelihood function (middle) and deviance function ($-2 \log$ likelihood; right panel).	97
4.10	A scatterplot between the individual data points (observed proportion A	21
1.10	responses for the 34 faces) and the predicted probabilities from GCM under	
	the maximum likelihood parameter estimates.	101
5.1	Simulated consequences of averaging of learning curves.	107
5.2	A simulated saccadic response time distribution from the gap task.	114
5.3	Left panel: Accuracy serial position function for immediate free recall of a	
	list of 12 words presented as four groups of three items. Right panel: Serial	
	position functions for three clusters of individuals identified using K-means	
	analysis.	118
5.4	The gap statistic for different values of k.	120
5.5	A structural equation model for choice RT.	122
6.1	Two illustrative Beta distributions obtained by the R code in Listing 6.1.	133
6.2	Bayesian prior and posterior distributions obtained by a slight modification of	105
6.2	the R code in Listing 6.1.	137
6.3	Jeffreys prior, Beta(0.5,0.5), for a Bernoulli process.	140
7.1	MCMC output obtained by Listing 7.2 for different parameter values.	150
7.2 7.3	MCMC output obtained by Listing 7.2 for different parameter values. Experimental procedure for a visual working memory task in which	153
1.3	participants have to remember the color of a varying number of squares.	154
7.4	Data (circles) from a single subject in the color estimation experiment of	134
	Zhang and Luck (2008) and fits of the mixture model (solid lines).	155
		100

	List of Illustrations	
7.5	Posterior distributions of parameter estimates for g and σ_{vM} obtained when	
	fitting the mixture model to the data in Figure 7.4.	1
7.6	Overview of a simple Approximate Bayesian Computation (ABC) rejection	
	algorithm.	1
7.7	a. Data from an hypothetical recognition memory experiment in which people	
	respond "old" or "new" to test items that are old or new. b. Signal-detection	
	model of the data in panel a .	1
8.1	Illustration of a Gibbs sampler for a bivariate normal distribution.	1
8.2	Overview of how JAGS is being used from within R.	1
8.3	Output obtained from R using the plot command with an MCMC object	
	returned by the function coda.samples.	1
8.4	a. Data from an hypothetical recognition memory experiment in which people	
	respond "old" or "new" to test items that are old or new. b. Signal-detection	
	model of the data in panel a .	1
8.5	Output from JAGS for the signal detection model illustrated in Figure 8.4.	1
8.6	Convergence diagnostics for the JAGS signal detection model reported in	
	Figure 8.5.	1
8.7	The high-threshold (1HT) model of recognition memory expressed as a	
	multinomial processing tree model.	1
8.8	Output from JAGS for the high-threshold (1HT) model illustrated in Figure 8.7.	1
8.9	a. Autocorrelation pattern for the output shown in Figure 8.8. b. The same	
	autocorrelations after thinning. Only every fourth sample is considered during	
	each MCMC chain.	1
8.10	The no-conflict MPT model proposed by Wagenaar and Boer (1987) to account	
	for performance in the inconsistent-information condition in their experiment.	1
8.11	Output from a run of the no-conflict model for the data of Wagenaar and Boer	
	(1987) using Listings 8.8 and 8.9.	1
8.12	Example of a 95% highest density interval (HDI).	1
8.13	Diagram of the normal model, in the style of the book, Doing Bayesian Data	
	Analysis (Kruschke, 2015).	2
8.14	Diagram of the normal model, in the style of conventional graphical models.	2
9.1	Graphical model for the signal-detection example from Section 8.3.1.	2
9.2	Graphical model for a signal-detection model that is applied to a number of	
	different conditions or participants.	2
9.3	Graphical model for a signal-detection model that is applied to a number of	
	different conditions or participants.	2
9.4	Hierarchical estimates of individual hit rates (left panel) and false alarm	
	rates (right) shown as a function of the corresponding individual frequentist	
	estimates for the data in Table 9.2.	2
9.5	Graphical model for a hierarchical model of memory retention.	2
9.6	Results of a run of the hierarchical exponential forgetting model defined in	-
	Listings 9.3 and 9.4.	2
9.7	Posterior densities of the parameters <i>a</i> , <i>b</i> , and α of the hierarchical exponential	
- • •	forgetting model defined in Listings 9.3 and 9.4.	2

xvi	List of Illustrations	
9.8	Results of a run of the hierarchical power forgetting model defined in Listings 9.5 and 9.6.	21
9.9	Graphical model for a hierarchical model of intertemporal choice.	21
9.10	Data from 15 participants of an intertemporal choice experiment reported by	22
,	Vincent (2016).	22
9.11	Snippet of the data file from the experiment by Vincent (2016) that is used by the R script in Listing 9.8.	22
9.12	Predictions of the hierarchical intertemporal choice model for the experimental conditions explored by Vincent (2016).	22
9.13	Posterior densities for the parameters of the hierarchical intertemporal choice model when it is applied to the experimental conditions explored by Vincent (2016)	22
10.1	(2016). Fits of the polynomial law of sensation to noisy data generated from a	22
10.1	logarithmic function.	24
10.2	Predictions from a polynomial function of order 2 (left panel) and order 10	
	(right panel), with randomly sampled parameter values.	24
10.3	An illustration of the bias-variance trade-off.	24
10.4	The bias-variance trade-off. As model complexity (the order of the fitted	
	polynomial) increases, bias decreases and variance increases.	24
10.5	Out-of-set prediction error.	24
10.6	The two functions underlying prospect theory.	25
10.7	K-L distance is a function of models and their parameters.	25
10.8	Prior probability (solid horizontal line) and posterior probabilities (lines	
	labeled β and ϵ) for two parameters in a multinomial tree model that are	
	"posterior-probabilistically-identified."	26
11.1	Illustration of how the marginal likelihood can implement the principle of	
	parsimony.	27
11.2	Illustration of the Savage-Dickey density ratio for the signal detection model,	
	examining whether $b \neq 0$.	28
11.3	Autocorrelations in samples of the model indicator pM2 using noninformative	
	pseudo-priors (left panel) and pseudo-priors approximating the posterior (right	• •
	panel).	29
11.4	Predicted hit and false alarm rates in a change-detection task derived using	
	non-informative (left-hand quadrants) and informative (right-hand quadrants)	•
10.1	prior distributions for two models of visual working memory.	30
12.1	A flowchart of modeling.	31
12.2	The effect of the response suppression parameter η in Lewandowsky's (1999) connectionist model of serial recall.	31
12.3	A schematic depiction of sufficiency and necessity.	31
12.5	Architecture of a Hebbian model of associative memory.	33
13.2	Different ways of representing information in a connectionist model.	33
13.3	Schematic depiction of the calculation of an outer product ΔW between two	55
-	vectors \mathbf{o} and \mathbf{c} .	34
13.4	Generalization in the Hebbian model.	34

Cambridge University Press 978-1-107-52561-0 — Computational Modeling of Cognition and Behavior Simon Farrell , Stephan Lewandowsky Frontmatter <u>More Information</u>

	List of Illustrations	XV
13.5	Graceful degradation in a distributed model.	348
13.6	A set of 8 orthogonal (Walsh) vectors for an 8-element auto-associator to learn.	350
13.7	Classification performance of the Brain-State-in-a-Box model.	355
13.8	The logistic activation function.	357
13.9	The error between the network output and the target on each sweep.	362
13.10	Multidimensional scaling applied to hidden unit activations early (left) and	
	late (right) in training.	363
14.1	Overview of the family of sequential-sampling models.	370
14.2	Overview of the diffusion model.	370
14.3	Histogram of a hypothetical RT distribution overlaid with quantiles 0.1, 0.3,	
	0.5, 0.7, and 0.9.	372
14.4	Quantile probability functions predicted by the diffusion model.	373
14.5	QPF for the synthetic data generated and plotted by Listing 14.5.	381
14.6	Graphical representation of a ballistic decision model for a lexical decision	
	(word-nonword) task.	387
14.7	QPF for the synthetic data generated and plotted by Listing 14.8.	390
15.1	Learning of a basic reinforcement action model on the bandit task.	400
15.2	A simple maze. The squares are different states.	402
15.3	Sequencing of choice of action, delivery of reward, and move to a new state.	402
15.4	Learning for three different reinforcement learning models.	403
15.5	Activity in a single dopamine neuron consistent with reward prediction error.	405
15.6	Prediction error in a temporal difference model, at different stages of learning	
	(see Listing 15.2).	408
15.7	The modeling framework for the modeling of FEF carried out by Purcell et al.	
	(2010).	416
15.8	A schematic depiction of the model assumed in Turner et al. (2013) (top panel)	
	and in van Ravenzwaaij et al. (2017) (bottom panel).	418

Tables

5.1	Berkeley admission data broken down by department	106
6.1	Joint and marginal probabilities	129
7.1	Summary of all approaches to Bayesian parameter estimation that are discussed	
	in this chapter.	147
8.1	Summary of the experiment by Wagenaar and Boer (1987).	192
8.2	Performance of subjects in the experiment by Wagenaar and Boer (1987) for	
	all conditions and predictions of the no-conflict model presented in Listings	
	8.8 and 8.9	194
9.1	Notation for nodes used in graphical models	205
9.2	Observed and predicted hit and false alarm rates for one run of the hierarchical	
	signal-detection model in Listing 9.2	210
10.1	Summary parameter estimates (means, with standard deviations in brackets)	
	for fits of cumulative prospect theory to the data of Rieskamp (2008)	255
14.1	Comparison of parameter values used to generate synthetic data and the values	
	recovered by fitting the diffusion model	379
14.2	Illustration of the speed-accuracy dilemma in a speeded choice task using data	
	from three hypothetical participants and parameter estimates from fitting the	
	diffusion model	384
A.1	Table of Greek Letters	424
B .1	Scalars, vectors, and functions	425
B.2	Summing, multiplying, and differentiation	425
B.3	Enumeration	425
B.4	Probability	426

List of Contributors

Nina R. Arnold University of Mannheim

Amy H. Criss Syracuse University

Chris Donkin University of New South Wales

Birte U. Forstmann University of Amsterdam

Robert M. French LEAD-CNRS, University of Burgundy-Franche Comté

John K. Kruschke Indiana University

Michael Lee University of California Irvine

Jay Myung Ohio State University

Klaus Oberauer University of Zurich

Amy Perfors University of Adelaide

Don van Ravenzwaaij University of Groningen

хіх

Cambridge University Press 978-1-107-52561-0 — Computational Modeling of Cognition and Behavior Simon Farrell , Stephan Lewandowsky Frontmatter <u>More Information</u>

xx List of Contributors

Jennifer Trueblood Vanderbilt University

Brandon Turner Ohio State University

Joachim Vandekerckhove University of California Irvine

Eric-Jan Wagenmakers University of Amsterdam

Trisha van Zandt Ohio State University

Preface

This book presents an integrated approach to the application of computational and mathematical models in psychology. Computational models have been extensively applied to better understand many domains of human behavior, such as perception, memory, reasoning, decision-making, communicating, and deciding. Modeling is often applied in these areas to different purposes – measurement, prediction, and model testing. Our major goal here is to provide a unified view on the interface between theories, simulations, and data, with a view to answering the central question: how can we learn from models of behavior?

We cover several topics. Part I of the book explains what a computational model is and gives a general overview of models that have been applied to understanding human behavior. We also examine the process of converting theoretical statements into simulation code and give an overview of the various concepts required to understand modeling. Part II examines one use of models: parameter estimation. By fitting models to data, inferences can be made from the resulting parameter estimates, and statements made about the psychological mechanism(s) or representations that generated those data. We cover maximum likelihood estimation and Bayesian estimation, including estimation across multiple participants and hierarchical estimation. Part III explores how inferences can be made from models by using model comparison. We consider under what conditions statements of sufficiency and necessity can be made from data, and how model complexity can be conceptualized and quantified. Part III examines several approaches to accounting for complexity in model comparison, including information criteria and Bayes Factors. Part IV considers the role of computational modeling in advancing psychological theory. We explore use of models as adjuncts to human reasoning, and the interaction between human and artificial intelligence to guide theorizing and generation of conceptual insights. We also consider the use of models as tools to arrive at shared understanding between researchers (i.e. the use of models as common terms of reference), and practices for communicating and sharing models. We finish by giving an overview of the application of models in several popular areas: neural network models, models of choice response time, and the application of models to understand neural data.

To accomplish all this, we use a freely available computer language, called R, which was initially developed for statistical data analysis but has broad applicability and is now used by many modellers.

xxii Preface

Some readers may know that we wrote a seemingly similar book some time ago (Lewandowsky and Farrell, 2011). The present book retains some of the features of the earlier book that seemed to be appreciated by readers – for example, we try to explain the important features in all our snippets of source code. Thus, while this is not a textbook in R programming, the book does point to the most important aspects of our programs that are relevant to the task at hand, namely how to understand the human mind by computational means. Beyond that, however, the present book is very different from our earlier volume. Whereas the earlier book was an introductory textbook, the present volume aspires to more lofty goals: we want to take the reader to the leading edge of current modeling practice, and we introduce several novel developments in the course of doing so.

As well as providing simulation code in the R language to complement the equations and descriptions in the text, each chapter ends with an *in vivo* section. For each *in vivo* example, we asked a researcher to share their experiences in working on that topic or method, some consideration of the philosophy of science in that area, or a counterpoint to our own views. We think these sections are insightful and illuminating (and amusing!), and we are very grateful to other members of the field for giving us the opportunity to share their thoughts with you.

As well as the authors of the *in vivo* sections throughout the book, we would like to thank the numerous friends and colleagues with whom we have discussed many issues in preparing this book. In particular, we thank Henrik Singmann and Benjamin Vincent for their comments on drafts of chapters in which their work was cited and used. We would also like to thank the instructors (Gordon Brown, Amy Criss, Adele Diederich, Chris Donkin, Bob French, Cas Ludwig, Klaus Oberauer, Jörg Rieskamp, Lael Schooler, Joachim Vandekerckhove, and Eric-Jan Wagenmakers) and students of the four European Summer Schools on Computational and Mathematical Modeling of Cognition that we have conducted over the past eight years, and that have attracted more than 120 students to date. Their feedback on drafts of this book have been invaluable and we thank students and instructors for many enthusiastic discussions. One thing that has been affirmed for us through these discussions is that models are used in many different ways in psychology. In presenting a unified and integrative theoretical framework for modeling, we have attempted to capture this variance, but recognize that there are many models and points of view that we could not explore here. We would also like to thank Janka Romero and her predecessor, Hetty Marx, at Cambridge University Press for their help and encouragement whilst proposing and writing the book, and Adam Hooper, Anup Kumar, Christina Taylor, and Sindhujaa Ayyappan for their help during production.