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Preface

This book presents an integrated approach to the application of computational and math-

ematical models in psychology. Computational models have been extensively applied

to better understand many domains of human behavior, such as perception, memory,

reasoning, decision-making, communicating, and deciding. Modeling is often applied

in these areas to different purposes – measurement, prediction, and model testing. Our

major goal here is to provide a unified view on the interface between theories, simula-

tions, and data, with a view to answering the central question: how can we learn from

models of behavior?

We cover several topics. Part I of the book explains what a computational model

is and gives a general overview of models that have been applied to understanding

human behavior. We also examine the process of converting theoretical statements into

simulation code and give an overview of the various concepts required to understand

modeling. Part II examines one use of models: parameter estimation. By fitting models

to data, inferences can be made from the resulting parameter estimates, and statements

made about the psychological mechanism(s) or representations that generated those

data. We cover maximum likelihood estimation and Bayesian estimation, including

estimation across multiple participants and hierarchical estimation. Part III explores how

inferences can be made from models by using model comparison. We consider under

what conditions statements of sufficiency and necessity can be made from data, and

how model complexity can be conceptualized and quantified. Part III examines several

approaches to accounting for complexity in model comparison, including information

criteria and Bayes Factors. Part IV considers the role of computational modeling in

advancing psychological theory. We explore use of models as adjuncts to human rea-

soning, and the interaction between human and artificial intelligence to guide theorizing

and generation of conceptual insights. We also consider the use of models as tools to

arrive at shared understanding between researchers (i.e. the use of models as common

terms of reference), and practices for communicating and sharing models. We finish by

giving an overview of the application of models in several popular areas: neural network

models, models of choice response time, and the application of models to understand

neural data.

To accomplish all this, we use a freely available computer language, called R, which

was initially developed for statistical data analysis but has broad applicability and is

now used by many modellers.

xxi
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xxii Preface

Some readers may know that we wrote a seemingly similar book some time ago

(Lewandowsky and Farrell, 2011). The present book retains some of the features of the

earlier book that seemed to be appreciated by readers – for example, we try to explain the

important features in all our snippets of source code. Thus, while this is not a textbook

in R programming, the book does point to the most important aspects of our programs

that are relevant to the task at hand, namely how to understand the human mind by

computational means. Beyond that, however, the present book is very different from

our earlier volume. Whereas the earlier book was an introductory textbook, the present

volume aspires to more lofty goals: we want to take the reader to the leading edge of

current modeling practice, and we introduce several novel developments in the course

of doing so.

As well as providing simulation code in the R language to complement the equations

and descriptions in the text, each chapter ends with an in vivo section. For each in

vivo example, we asked a researcher to share their experiences in working on that

topic or method, some consideration of the philosophy of science in that area, or a

counterpoint to our own views. We think these sections are insightful and illuminating

(and amusing!), and we are very grateful to other members of the field for giving us the

opportunity to share their thoughts with you.

As well as the authors of the in vivo sections throughout the book, we would like

to thank the numerous friends and colleagues with whom we have discussed many

issues in preparing this book. In particular, we thank Henrik Singmann and Benjamin

Vincent for their comments on drafts of chapters in which their work was cited and

used. We would also like to thank the instructors (Gordon Brown, Amy Criss, Adele

Diederich, Chris Donkin, Bob French, Cas Ludwig, Klaus Oberauer, Jörg Rieskamp,

Lael Schooler, Joachim Vandekerckhove, and Eric-Jan Wagenmakers) and students of

the four European Summer Schools on Computational and Mathematical Modeling of

Cognition that we have conducted over the past eight years, and that have attracted more

than 120 students to date. Their feedback on drafts of this book have been invaluable and

we thank students and instructors for many enthusiastic discussions. One thing that has

been affirmed for us through these discussions is that models are used in many different

ways in psychology. In presenting a unified and integrative theoretical framework for

modeling, we have attempted to capture this variance, but recognize that there are

many models and points of view that we could not explore here. We would also like to

thank Janka Romero and her predecessor, Hetty Marx, at Cambridge University Press

for their help and encouragement whilst proposing and writing the book, and Adam

Hooper, Anup Kumar, Christina Taylor, and Sindhujaa Ayyappan for their help during

production.
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