Contents

Preface

1 Errors in Computation

1.1 Introduction

1.2 Floating Point Representation of Number

1.3 Binary Numbers

1.3.1 Binary number representation in computer

1.4 Significant Digits

1.5 Rounding and Chopping a Number

1.6 Errors due to Rounding/Chopping

1.7 Measures of Error in Approximate Numbers

1.8 Errors in Arithmetic Operations

1.9 Computation of Errors Using Differentials

1.10 Errors in Evaluation of Some Standard Functions

1.11 Truncation Error and Taylor’s Theorem

Exercise 1

References and Some Useful Related Books/Papers

2 Linear Equations and Eigenvalue Problem

2.1 Introduction

2.2 Ill-conditioned Equations

2.3 Inconsistency of Equations

2.4 Linear Dependence

2.5 Rank of a Matrix

2.6 Augmented Matrix

2.7 Methodology for Computing A^{-1} by Solving $Ax = b$

2.8 Cramer’s Rule

2.9 Inverse of Matrix by Cofactors

2.10 Definitions of Some Matrices

2.11 Properties of Matrices

2.12 Elementary Transformations

2.13 Methods for Solving Equations (Direct Methods)

2.13.1 Gaussian elimination method (Basic)

2.13.2 Gaussian elimination (with row interchanges)
Table of Contents

2.14 LU Decomposition/Factorisation

- 2.14.1 By Gaussian elimination method
- 2.14.2 Crout’s method
- 2.14.3 Cholesky’s method
- 2.14.4 Reduction to PA = LU

2.15 Gauss–Jordan (or Jordan’s) Method

2.16 Tridiagonal System

2.17 Inversion of Matrix

2.18 Number of Arithmetic Operations in Gaussian Elimination

2.19 Eigenvalues and Eigenvectors

2.20 Power Method to Find Dominant Eigenvalue/Latent Root

- 2.20.1 To find smallest eigenvalue by power method
- 2.20.2 Determination of subdominant eigenvalues

2.21 Iterative Methods

2.21.1 Gauss–Jacobi method
2.21.2 Gauss–Seidel method

2.22 Condition for Convergence of Iterative Methods

2.23 Successive Over-Relaxation (S.O.R.) Method

2.24 Norms of Vectors and Matrices

2.24.1 Vector norm
2.24.2 Matrix norm
2.24.3 Forms of matrix norm
2.24.4 Compatibility of matrix and vector norms
2.24.5 Spectral norm

2.25 Sensitivity of Solution of Linear Equations

Exercise 2

References and Some Useful Related Books/Papers

3 Nonlinear Equations

3.1 Introduction

3.2 Order of Convergence of Iterative Method

3.3 Method of Successive Substitution

3.4 Bisection Method (Method of Halving)

3.5 Regula–Falsi Method (or Method of False Position)

3.6 Secant Method

3.7 Convergence of Secant/Regula–Falsi Methods

3.8 Newton–Raphson (N–R) Method

- 3.8.1 Evaluation of some arithmetical functions

Contents

3.8.2 Convergence of Newton–Raphson method
3.8.3 Convergence when roots are repeated
3.9 Simultaneous Equations
3.9.1 Method of successive substitution
3.9.2 Newton–Raphson method
3.10 Complex Roots
3.11 Bairstow’s Method
Exercise 3
References and Some Useful Related Books/Papers

4 Interpolation
4.1 Introduction
4.2 Some Operators and their Properties
4.2.1 Linearity and commutativity of operators
4.2.2 Repeated application and exponentiation of operators
4.2.3 Interrelations between operators
4.2.4 Application of operators on some functions
4.3 Finite Difference Table
4.3.1 Propagation of error in a difference table
4.4 Error in Approximating a Function by Polynomial
4.4.1 Justification for approximation by polynomial
4.5 Newton’s (Newton–Gregory) Forward Difference (FD) Formula
4.5.1 Error in Newton’s FD formula
4.6 Newton’s (Newton–Gregory) Backward Difference (BD) Formula
4.7 Central Difference (CD) Formulae
4.7.1 Gauss’s Backward (GB) formula
4.7.2 Gauss’s Forward (GF) formula
4.7.3 Stirling’s formula
4.7.4 Bessel’s formula
4.7.5 Everett’s formula
4.7.6 Steffensen’s formula
4.7.7 Comments on central difference formulae
4.8 General Comments on Interpolation
4.9 Lagrange’s Method
4.10 Divided Differences (DD)
4.10.1 Divided differences are independent of order of arguments
4.10.2 Newton’s Divided Difference (DD) formula
4.11 Lagrange’s Formula Versus Newton’s DD Formula
Contents

4.12 Hermite’s Interpolation 191

Exercise 4 194

References and Some Useful Related Books/Papers 197

5 Numerical Differentiation 198

5.1 Introduction 198

5.2 Methodology for Numerical Differentiation 198

5.3 Differentiation by Newton’s FD Formula 199

5.3.1 Error in differentiation 200

5.4 Differentiation by Newton’s BD Formula 202

5.5 Differentiation by Central Difference Formulae 208

5.5.1 At tabular points 208

5.5.2 At non-tabular points 211

5.6 Method of Undetermined Coefficients 216

5.7 Comments on Differentiation 218

5.8 Derivatives with Unequal Intervals 218

5.8.1 Forward Difference formulae 219

5.8.2 Backward Difference formulae 220

5.8.3 Central Difference formulae 221

Exercise 5 221

References and Some Useful Related Books/Papers 222

6 Numerical Integration 223

6.1 Introduction 223

6.2 Methodology for Numerical Integration 223

6.3 Rectangular Rule 225

6.4 Trapezoidal Rule 228

6.5 Simpson’s 1/3rd Rule 231

6.5.1 Comments on Simpson’s 1/3rd rule 234

6.6 Simpson’s 3/8th Rule 235

6.7 Weddle’s Rule 235

6.8 Open-Type Formulae 240

6.9 Newton–Cotes (or Cotes) Formulae 242

6.10 Method of Undetermined Coefficients 245

6.11 Euler–Maclaurin Formula 249

6.12 Richardson’s Extrapolation 254

6.13 Richardson’s Extrapolation 256
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.14</td>
<td>Comments on Numerical Integration</td>
<td>259</td>
</tr>
<tr>
<td>6.15</td>
<td>Gaussian Quadrature</td>
<td>259</td>
</tr>
<tr>
<td>6.15.1</td>
<td>Gauss–Legendre quadrature formula</td>
<td>260</td>
</tr>
<tr>
<td>6.15.2</td>
<td>Gauss–Chebyshev quadrature formulae</td>
<td>269</td>
</tr>
<tr>
<td>6.15.3</td>
<td>Gauss–Laguerre formula</td>
<td>270</td>
</tr>
<tr>
<td>6.15.4</td>
<td>Gauss–Hermite formula</td>
<td>271</td>
</tr>
<tr>
<td>Exercise 6</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td>References and Some Useful Related Books/Papers</td>
<td></td>
<td>274</td>
</tr>
</tbody>
</table>

7 Ordinary Differential Equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>275</td>
</tr>
<tr>
<td>7.2</td>
<td>Initial Value and Boundary Value Problems (IVP and BVP): Solution of IVP</td>
<td>276</td>
</tr>
<tr>
<td>7.3</td>
<td>Reduction of Higher-Order IVP to System of First Order Equations</td>
<td>277</td>
</tr>
<tr>
<td>7.4</td>
<td>Picard’s Method (Method of Successive Approximations)</td>
<td>277</td>
</tr>
<tr>
<td>7.5</td>
<td>Taylor’s Series Method</td>
<td>279</td>
</tr>
<tr>
<td>7.6</td>
<td>Numerical Method, its Order and Stability</td>
<td>282</td>
</tr>
<tr>
<td>7.7</td>
<td>Euler’s Method</td>
<td>283</td>
</tr>
<tr>
<td>7.8</td>
<td>Modified (Improved) Euler’s Method</td>
<td>287</td>
</tr>
<tr>
<td>7.9</td>
<td>Runge–Kutta (R–K) Methods</td>
<td>289</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Application to first order simultaneous equations</td>
<td>292</td>
</tr>
<tr>
<td>7.10</td>
<td>Predictor–Corrector (P–C) Methods</td>
<td>295</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Milne’s method</td>
<td>296</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Adams–Bashforth method</td>
<td>299</td>
</tr>
<tr>
<td>7.11</td>
<td>Boundary Value Problem (BVP)</td>
<td>302</td>
</tr>
<tr>
<td>7.12</td>
<td>BVP as an Eigenvalue Problem</td>
<td>308</td>
</tr>
<tr>
<td>Exercise 7</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td>References and Some Useful Related Books/Papers</td>
<td></td>
<td>311</td>
</tr>
</tbody>
</table>

8 Splines and their Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>313</td>
</tr>
<tr>
<td>8.2</td>
<td>A Piece-Wise Polynomial</td>
<td>314</td>
</tr>
<tr>
<td>8.3</td>
<td>Spline Approximation</td>
<td>314</td>
</tr>
<tr>
<td>8.4</td>
<td>Uniqueness of Cubic Spline</td>
<td>315</td>
</tr>
<tr>
<td>8.5</td>
<td>Construction of Cubic Spline (Second Derivative Form)</td>
<td>316</td>
</tr>
<tr>
<td>8.6</td>
<td>Construction of Cubic Spline (First Derivative Form)</td>
<td>319</td>
</tr>
<tr>
<td>8.7</td>
<td>Minimal Property of a Cubic Spline</td>
<td>322</td>
</tr>
<tr>
<td>8.8</td>
<td>Application to Differential Equations</td>
<td>331</td>
</tr>
</tbody>
</table>
Contents

8.9 Cubic Spline: Parametric Form 336
8.10 Introduction to B-Splines 346
8.11 Bezier Spline Curves 347
8.12 Convex Polygon and Convex Hull 349
Exercise 8 351
References and Some Useful Related Books/Papers 352

9 Method of Least Squares and Chebyshev Approximation 354
9.1 Introduction 354
9.2 Least Squares Method 354
9.3 Normal Equations in Matrix Form 357
9.4 Approximation by Standard Functions 359
9.5 Over-Determined System of Linear Equations 363
9.6 Approximation by Linear Combination of Functions 366
9.7 Approximation by Orthogonal Polynomials 367
9.8 Chebyshev Approximation 370
Exercise 9 382
References and Some Useful Related Books/Papers 383

10 Eigenvalues of Symmetric Matrices 384
10.1 Introduction 384
10.2 Compact Form of Eigenvalues and Eigenvectors 385
10.3 Eigenvalues of Powers of a Matrix 386
10.4 Eigenvalues of Transpose of a Matrix 387
10.5 Theorem: Eigenvectors of A and Aᵀ are Biorthogonal 387
10.6 Corollary: Eigenvectors of Symmetric Matrix form Orthogonal Set 388
10.7 Theorem: Eigenvalues of Hermitian Matrix are Real 388
10.8 Product of Orthogonal Matrices is an Orthogonal Matrix 389
10.9 Eigenvalues of SᵀAS when S is Orthogonal 390
10.10 Eigenvectors of SᵀAS when S is Orthogonal 390
10.11 Methods to find Eigenvalues of Symmetric Matrix 390
10.12 Jacobi’s Method (Classical) 391
10.12.1 Convergence of Jacobi method 396
10.12.2 Cyclic Jacobi method 397
10.13 Givens Method 400
10.14 Householder’s Method 405
10.14.1 Matrix S is symmetric 405
10.14.2 Matrix S is orthogonal 406
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.14.3</td>
<td>Similarity transformation</td>
</tr>
<tr>
<td>10.14.4</td>
<td>First transformation</td>
</tr>
<tr>
<td>10.14.5</td>
<td>General procedure</td>
</tr>
<tr>
<td>10.15</td>
<td>Sturm Sequence and its Properties</td>
</tr>
<tr>
<td>10.15.1</td>
<td>Sturm sequence</td>
</tr>
<tr>
<td>10.15.2</td>
<td>Theorem</td>
</tr>
<tr>
<td>10.16</td>
<td>Eigenvalues of Symmetric Tridiagonal Matrix</td>
</tr>
<tr>
<td>10.17</td>
<td>Upper and Lower Bounds of Eigenvalues</td>
</tr>
<tr>
<td>10.17.1</td>
<td>Gerschgorin’s theorem</td>
</tr>
<tr>
<td>10.17.2</td>
<td>Corollary</td>
</tr>
<tr>
<td>10.17.3</td>
<td>Brauer’s theorem</td>
</tr>
<tr>
<td>10.18</td>
<td>Determination of Eigenvectors</td>
</tr>
<tr>
<td>10.19</td>
<td>LR Method</td>
</tr>
<tr>
<td>10.20</td>
<td>QR Method</td>
</tr>
<tr>
<td>Exercise 10</td>
<td></td>
</tr>
<tr>
<td>References and Some Useful Related Books/Papers</td>
<td></td>
</tr>
</tbody>
</table>

11 Partial Differential Equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>11.2</td>
<td>Some Standard Forms</td>
</tr>
<tr>
<td>11.3</td>
<td>Boundary Conditions</td>
</tr>
<tr>
<td>11.4</td>
<td>Finite Difference Approximations for Derivatives</td>
</tr>
<tr>
<td>11.5</td>
<td>Methods for Solving Parabolic Equation</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Explicit method/scheme/formula</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Fully Implicit scheme/method</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Crank–Nicolson’s (C–N) scheme</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Comparison of three schemes</td>
</tr>
<tr>
<td>11.5.5</td>
<td>Compatibility, stability and convergence</td>
</tr>
<tr>
<td>11.5.6</td>
<td>Compatibility of explicit scheme</td>
</tr>
<tr>
<td>11.5.7</td>
<td>Stability of explicit scheme</td>
</tr>
<tr>
<td>11.5.8</td>
<td>Stability of C–N scheme</td>
</tr>
<tr>
<td>11.5.9</td>
<td>Further comparison of schemes</td>
</tr>
<tr>
<td>11.5.10</td>
<td>Derivative boundary conditions</td>
</tr>
<tr>
<td>11.5.11</td>
<td>Zero-time discontinuity at endpoints</td>
</tr>
<tr>
<td>11.5.12</td>
<td>Parabolic equation in two dimensions</td>
</tr>
<tr>
<td>11.5.13</td>
<td>Alternating Direction Implicit (ADI) method</td>
</tr>
<tr>
<td>11.5.14</td>
<td>Non-rectangular space domains</td>
</tr>
<tr>
<td>11.6</td>
<td>Methods for Solving Elliptic Equations</td>
</tr>
</tbody>
</table>
Contents

11.6.1 Solution by Gauss–Seidel and Gaussian elimination 479
11.6.2 Solution by SOR method 485
11.6.3 Solution of elliptic equation by ADI method 489

11.7 Methods for Solving Hyperbolic Equations 490
11.7.1 Finite difference methods 491
11.7.2 Explicit method 491
11.7.3 Implicit method 492
11.7.4 Stability analysis 493
11.7.5 Characteristics of a partial differential equation 497
11.7.6 Significance of characteristics 498
11.7.7 Method of characteristics for solving hyperbolic equations 500

11.8 Hyperbolic Equation of First Order 508
11.8.1 Finite difference methods 510
11.8.2 Lax–Wendroff’s method 511
11.8.3 Wendroff’s method 514
11.8.4 Other explicit/implicit methods 515
11.8.5 Solving second order equation by simultaneous equations of first order 519
11.8.6 Solution of first order hyperbolic equation by method of characteristics 521

Exercise 11 525
References and Some Useful Related Books/Papers 531

12 Finite Element Method 532
12.1 Introduction 532
12.2 Weighted Residual Methods 533
12.2.1 Galerkin’s method 534
12.2.2 Least squares method 534
12.2.3 Subdomain method 534
12.2.4 Collocation method 535
12.3 Non-homogeneous Boundary Conditions 540
12.4 Variational Methods 541
12.4.1 Functional and its variation 542
12.4.2 Rayleigh–Ritz (or Ritz) method 543
12.5 Equivalence of Rayleigh–Ritz and Galerkin Methods (1–D) 546
12.6 Construction of Functional 547
12.6.1 Preliminaries from vector calculus 548
12.6.2 Minimum Functional Theorem (MFT) 549
12.6.3 Application of MFT to one-dimension problem

555

12.7 Equivalence of Rayleigh–Ritz and Galerkin Methods (2−D)

556

12.8 Pre-requisites for Finite Element Method

559

12.8.1 Shape functions

559

12.8.2 Normalised/natural coordinates

564

12.9 Finite Element Method

567

12.9.1 Ordinary differential equation

567

12.9.2 Elliptic equation

583

12.9.3 Node-wise (point-wise) assembly

598

12.9.4 Higher order elements

599

12.9.5 Element of rectangular shape

603

12.9.6 Parabolic equation (one dimension)

605

12.9.7 Parabolic equation (two dimensions)

613

12.9.8 Hyperbolic equation

616

Exercise 12

616

References and Some Useful Related Books/Papers

619

13 Integral Equations

620

13.1 Introduction

620

13.2 Fredholm Integral Equations

620

13.3 Volterra Integral Equations

621

13.4 Green’s Function

622

13.5 Solution of Differential Equation Represented by Integral and Vice-Versa

625

13.6 Reduction of Differential Equation to Integral Equation

627

13.6.1 Reduction of a BVP to Fredholm equation

628

13.6.2 Reduction of IVP to Volterra equation

630

13.7 Methods for Solving Fredholm Equations

631

13.7.1 Analytical method

632

13.7.2 Classical iterative method

637

13.7.3 Numerical method

640

13.8 Methods for Solving Volterra Equation

647

13.8.1 Numerical method

647

13.8.2 Taylor’s series method

648

13.8.3 Iterative method

650

Exercise 13

657

References and Some Useful Related Books/Papers

658
Contents

14 Difference Equations

14.1 Introduction .. 659
14.2 Method of Solution 660
 14.2.1 To find y^H 660
 14.2.2 To find y^P 662
14.3 Simultaneous Difference Equations and Exponentiation of Matrix 668
 14.3.1 Property of constant Row-sum (Column-sum) 673

Exercise 14 ... 674
References and Some Useful Related Books/Papers 675

15 Fourier Series, Discrete Fourier Transform and Fast Fourier Transform

15.1 Introduction ... 676
15.2 Fourier Series 676
15.3 Fourier Series with Other Intervals 678
15.4 Half-Range Fourier Series 679
15.5 Fourier Series for Discrete Data 681
15.6 Fourier Transform 685
15.7 Discrete Fourier Transform (DFT) 688
15.8 Representation of Transforms in Matrix Form 690
15.9 Complex Roots of Unity 691
15.10 Fast Fourier Transform (FFT) 696
15.11 Fast Fourier Transform via Inverse Transform (Author’s Comments) 699

Exercise 15 ... 707
References and Some useful related books/papers 708

16 Free and Moving Boundary Problems: A Brief Introduction

16.1 Introduction ... 709
16.2 Moving Boundary Problems 710
16.3 Moving Grid Method (MGM) 715
 16.3.1 MGM with interpolations 716
 16.3.2 MGM without interpolations 719
16.4 Free Boundary Problem 720

References and Some Useful Related Books/Papers 721

Appendices ..
Appendix A: Some Theorems and Formulae 723
Appendix B: Expansions of Some Functions 726
Appendix C: Graphs of Some Functions 727

Answers to Exercises .. 730

Index .. 755