INTRODUCTION TO ATMOSPHERIC MODELLING
African Institute of Mathematics Library Series

The African Institute of Mathematical Sciences (AIMS), founded in 2003 in Muizenberg, South Africa, provides a one-year postgraduate course in mathematical sciences for students throughout the continent of Africa. The AIMS LIBRARY SERIES is a series of short innovative texts, suitable for self-study, on the mathematical sciences and their applications in the broadest sense.

Editorial Board

Professor J. Banasiak (University of KwaZulu-Natal)
Professor A. F. Beardon (University of Cambridge)
Professor P. Deift (Courant Institute of Mathematical Sciences)
Professor P. E. Dorey (Durham University)
Professor B. W. Green (Director, AIMS)
Professor F. W. Hahne (AIMS and STIAS)
Professor A. Iserles (University of Cambridge)
Professor P. E. Kopp (African Institute of Mathematical Sciences)
Professor J. W. Sanders (Academic Director, AIMS)
Dr. T. Tokieda (University of Cambridge)
Professor N. G. Turok (University of Cambridge and Perimeter Institute, Ontario)

A complete list of books in the series can be found at www.cambridge.org/mathematics. Recent titles include the following:

Mathematical Modelling in One Dimension
JACEK BANASIAK

A First Course in Computational Algebraic Geometry
WOLFRAM DECKER AND GERHARD PFISTER

Ordinary Differential Equations
BERND J. SCHROERS

From Measures to Itô Integrals
EKKEHARD KOPP

Creative Mathematics
ALAN F. BEARDON

Understanding Fluid Flow
GRAE WORSTER
INTRODUCTION TO
ATMOSPHERIC MODELLING

DOUW G. STEYN
University of British Columbia, Vancouver
Contents

1. **Atmospheric phenomena and their study**
 1.1 Models as scientific tools
 1.2 Forces in a rotating frame of reference
 1.3 Governing equations
 1.4 Boussinesq approximation
 1.5 Atmospheric stratification
 1.6 Atmospheric numerical models

2. **Scale analysis of the governing equations**
 2.1 Order of magnitude analysis
 2.2 Dimensionless numbers

3. **Small scale dynamics**
 3.1 Reynolds decomposition
 3.2 The atmospheric boundary layer
 3.3 Sea breezes

4. **Large scale dynamics**
 4.1 Height, pressure and the geopotential
 4.2 Geostrophic dynamics
 4.3 Non-geostrophic dynamics and the shallow water model
 4.4 Vertical shear of the geostrophic wind
 4.5 Vorticity in the atmosphere

© in this web service Cambridge University Press
www.cambridge.org
Contents

5 Waves in the atmosphere 83
 5.1 The analysis of propagating waves (briefly) 84
 5.2 Simple wave types 85

Epilogue 94

Appendix A Dimensional analysis and scales 96
Bibliography 100
Index 102
This book has been written specifically for the AIMS Library Series, so its intended audience is students who are attending, have attended, or have backgrounds that would make them eligible to attend the postgraduate programs offered at the African Institute for Mathematical Sciences. The contents of this book could easily be delivered as one of the AIMS postgraduate courses, though it is primarily intended as a self study introductory guide to mathematical modelling in the atmospheric sciences. It has been prepared so that readers with a fairly thorough applied mathematics or physics background can easily, and with little additional reading, understand the main approaches, theoretical and observational underpinnings, intellectual history and challenges of the subject. It is neither a broad introduction to atmospheric science (there exist many such books which serve a very different audience than that intended here), nor is it a review of current research (since that will not serve my intended audience). This book has four distinct, but linked objectives:

- introduce the beauty and wonder of atmospheric phenomena by examining a representative selection;
- explain the importance of scale analysis and scaling arguments in studies of atmospheric phenomena;
- emphasize the power of mathematics in developing an understanding of these phenomena;
- demonstrate how a combination of mathematical modelling, numerical modelling and observations are needed to achieve the understanding.
I start with two rather lengthy introductory chapters designed to introduce the governing equations, their analytical difficulties, and how scale analysis is conducted. The substantive content of this book is organized according to the conventional scale analysis of atmospheric phenomena, and within each scale-specific section I will cover in some detail theoretical (analytical) modelling approaches. Wherever possible and appropriate, I will refer to numerical modelling and observations of the phenomena being discussed. This will be done in order to emphasize the richness of method that characterizes atmospheric science as an academic and professional discipline, but will not constitute a full discussion of atmospheric numerical modelling, or observational meteorology.

Many atmospheric scientists will think that the title implies a book concerned with numerical modelling, and will be surprised that this is not the case. I want to emphasize that intuitive models precede (analytical) mathematical models, which then lead to numerical models. I will not take the second step in that sequence in this book.

In keeping with the spirit of the AIMS Library Series, I will not make extensive reference to research literature, but will rather lean heavily on a small number of selected standard texts listed in my bibliography. These are all texts and colleagues I admire enormously. The colleagues are: Jean-Marie Beckers, Benoit Cushman-Roisin, John Dutton, Solomon Eskinazi and James Holton. I will not include detailed in-text references (since the intended audience will generally not have access to the texts), but will lean heavily on ideas, analyses, approaches and interpretations borrowed from these texts. I here acknowledge the borrowing, and the debt I owe these authors. I acknowledge that any misrepresentations of their ideas are due to my own inadequacies. Furthermore, by this acknowledgement I recognize their ideas as their own, and signal my understanding that not making specific reference leaves me vulnerable to accusations of plagiarism. I am sure they will understand that this has been done because of the nature of books in the AIMS Library Series, and their intended audience. Specifically, Sections 2.1, 4.1, 4.4, 4.5.2 and Chapter 5 follow the approaches taken by Holton, J. R., 1979: An Introduction to Dynamic Meteorology, Second Edition, Academic Press, New York. Sections 4.2 and 4.5.1 draw heavily from Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics, Prentice Hall, NJ. Sections 3.2.1 and 3.2.2 are based on Tennekes,

I am indebted to a stream of remarkable graduate students I taught at UBC in EOSC 571 (Introduction to Research in Atmospheric Science and Physical Oceanography) over the past eight years. Their enthusiastic and always interesting engagement with the subject material made me think hard about many of the ideas contained in this book. I thank Stefano Galmarini who in a strange way bears ultimate responsibility for this book through first telling me about AIMS, and Fritz Hahne and Barry Green for making possible my stay at AIMS in 2010–2011. Alan Beardon suggested this book, and I thank him for persuading me to take up his idea. David Tranah shepherded the manuscript through the labyrinth of CUP. I have drawn heavily on an excellent summary of dimensional analysis by my colleague George Bluman. Susan Allen read an early version of the manuscript and provided wise and critical advice, and Nadya Moisseeva helped with her excellent work on Sardinian sea breezes. Phil Austin and Nico Fameli changed me from a LaTeX neophyte to LaTeX competent. Ultimately, I take full responsibility for the content and the particular perspective which I bring to the subject matter.

Most of all, I could not have done this without the many years of support and encouragement from Margaret. JoHanna is of course responsible for keeping me humble!

Vancouver, September 2014.