Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

FUNDAMENTALS OF ELECTRICAL ENGINEERING

This book is designed as a textbook for an introductory course in electrical engineering, accessible to undergraduate students in all branches of engineering. It offers detailed treatment of the fundamental concepts of basic electrical engineering.

Written in simple language and organized into fourteen chapters, this book provides a balance between theory and applications. Numerous circuit diagrams and explicit illustrations add to the readability of the text. Important topics covered including electromagnetic field theory, electrostatics, electrical circuits, magnetostatics, network theorems, three-phase system and electrical machines are discussed in detail. Exhaustive pedagogical features including solved problems, numerical exercises and multiple choice questions will help students in understanding and assessing the concepts of electrical engineering.

S. B. Lal Seksena is Professor at the Department of Electrical and Electronics Engineering, National Institute of Technology, Jamshedpur. He has been teaching courses on electrical machines, power system operations and control, instrumentation and measurement including process instrumentation and advanced instrumentation for more than 35 years. His research interests include non-conventional energy sources, power system drives and energy auditing.

Kaustuv Dasgupta is Assistant Professor at the Department of Electrical Engineering, Meghnad Saha Institute of Technology, Maulana Abdul Kalam Azad University of Technology, Kolkata. He teaches courses on fundamentals of electrical engineering, control systems and electromagnetic field theory at Meghnad Saha Institute of Technology and Jadavpur University. His research interests include microcontroller based protection and solar power. Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

Fundamentals of Electrical Engineering

S. B. Lal Seksena Kaustuv Dasgupta

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, vic 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India 79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107464353

© S. B. Lal Seksena and Kaustuv Dasgupta 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-46435-3 Paperback

Additional resources for this publication at www.cambridge.org/9781107464353

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

> *Dedication* Uma Dasgupta Rekha Dasgupta Swati Saxena Daivik Saxena

> > BSKJ

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

Contents

Preface xi				
1. BASIC ELECTRICAL PRINCIPLE AND COMPONENTS 1-33				
	1.1	Introduction	1	
	1.2	Charge	1	
	1.3	Electric Potential or Voltage	2	
	1.4	Electric Current	2	
	1.5	Alternating Current: Amplitude, Frequency and Phase	3	
	1.6	Ohm's Law: Resistance	4	
	1.7	Combination of Resistances: Equivalent Resistance	5	
	1.8	Colour Code of Resistor	9	
	1.9	Electric Power and Energy	10	
	1.10	Basic Idea of Capacitor and Capacitance	10	
	1.11	Basic Idea of Inductor and Inductance	11	
	Solvec	l Problems	12	
	Proble	ems to Practice	28	
	Multi	ple Choice Questions	32	
2.	ELEC	TRICAL CIRCUITS		34-129
	2.1	Introduction	34	
	2.2	Basic Concepts: Electric Circuit, Loop, Mesh etc.	34	
	2.3	Circuit Components	35	
	2.4	Star-Delta Conversion	40	
	2.5	Kirchhoff's Current Law, Kirchhoff's Voltage Law and Their Applications	42	
	2.6	Superposition Theorem	45	
	2.7	Thevenin's Theorem	49	
	2.8	Norton's Theorem	53	
	2.9	Maximum Power Transfer Theorem	57	
	2.10	Millman's Theorem	59	
	2.11	Reciprocity Theorem	60	
	Solved	l Problems	61	
	Proble	ems to Practice	118	
	Multi	ple Choice Questions	128	

© in this web service Cambridge University Press

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

viii | Fundamentals of Electrical Engineering

3.	ELEC	TROSTATIC		130-169
	3.1	Introduction	130	
	3.2	Coulomb's Law and Its Application	130	
	3.3	Different Physical Parameters Related to an Electric Field	132	
	3.4	Gauss's Law in Free Space	136	
	3.5	Inter-relation between Gauss's Law and Coulomb's Law	137	
	3.6	Gauss's Law in Three Dimensional Free Space	139	
	3.7	Poisson's Equation in Electrostatic Field	139	
	3.8	Capacitor and Capacitance	140	
	3.9	Equivalent Capacitor of Parallel and Series Connection	144	
	3.10	Energy Stored in Capacitor	145	
	Solved	Problems	145	
	Proble	ms to Practice	164	
	Multip	ole Choice Questions	167	
4	FUNI	DAMENTALS OF AC AND AC CIRCUITS		170-262
1.	4.1	Introduction	170	170 202
	4.2	Quantification of AC: Average Value, RMS Value and Form Factor	170	
	4.3	Generation of AC Voltage	177	
	4.4	Transient Response	179	
	4.5	Phase and Phase Difference	186	
	4.6	Phasor Representation and Phasor Diagram	188	
	4.7	AC Transient Response	191	
	4.8	Steady State Analysis	197	
	4.9	Wattless (Idle) Current	208	
	4.10	L-C-R Resonant Circuit (Acceptor Circuit)	209	
	4.11	Parallel Resonant Circuit (Rejector Circuit)	211	
	4.12	Power in AC Circuit	213	
	Solved	Problems	214	
		ms to Practice	245	
		ole Choice Questions	260	
5.	-			263-299
	5.1	Introduction	263	
	5.2	Different Physical Parameters Related to Magnetic Field	263	
	5.3	Origin of Magnetism: Weber-Ewing Molecular Theory	264	
	5.4	Biot-Savart's Law	265	
	5.5	Application of Biot-Savart's Law	266	
	5.6	Ampere's Circuital Law	269	
	5.7	Application of Ampere's Law	270	
	5.8	Magnetization	270	
	5.9	Demagnetization: Curie Point	272	
	5.10	Electromagnetic Induction	272	

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

	Content ix
5.11 Application of Faraday's Law	273
5.12 Transformer EMF and Motional EMF	273
5.13 Self-Inductance	275
5.14 Mutual Inductance	276
5.15 Combination of Inductors	277
Solved Problems	280
Problems to Practice	293
Multiple Choice Questions	297
6. MAGNETIC CIRCUIT	300-331
6.1 Introduction	300
6.2 Concept of Magnetic Flux Flow	300
6.3 Ampere's Law and Magnetic Circuit: MMF	301
6.4 Hopkinson's Law: Reluctance	302
6.5 Analogous Quantity of Magnetic and Electric Circuit	303
6.6 Magnetic Circuit on AC Excitation	306
6.7 Losses in Magnetic Circuit	309
6.8 Energy Stored in a Magnetic Field	312
6.9 Energy Stored in a Solenoid	312
6.10 Lifting Power of an Electromagnet	312
Solved Problems	313
Problems to Practice	324
Multiple Choice Questions	330
7. THREE PHASE SYSTEM	332-379
7.1 Introduction	332
7.2 Concept of Three Phase Voltage	332
7.3 Generation of Three Phase Voltage	334
7.4 Three Phase Load: Balanced and Unbalanced Three Phase	335
7.5 Phaser Diagram of Three Phase System	336
7.6 Rotating Magnetic Field	336
7.7 Star and Delta Connected Load	339
7.8 Measurement of Power Consumed by a Three Phase Load	343
Solved Problems	348
Problems to Practice	374
Multiple Choice Questions	379
8. DC MACHINE	380-431
8.1 Introduction	380
8.2 Construction of DC Machine	381
8.3 Fleming's Rule	385
8.4 Commutation	386
8.5 Armature Reaction	390
8.6 Induced EMF in DC Machine	391

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

x | Fundamentals of Electrical Engineering

	8.7	Torque in DC Machine	394
	8.8	Types of DC Machines	396
	8.9	DC Generator Characteristics	399
	8.10	Characteristics of DC Motor	403
	8.11	Speed Control of DC Motor	406
	8.12	DC Motor Starter	407
	8.13	Losses in DC Machine	408
	8.14	Efficiency of DC Machine	409
	Solved	l Problems	409
	Proble	ems to Practice	425
	Multip	ple Choice Questions	429
9.	. TRANSFORMER		432-475
	9.1	Introduction	432
	9.2	Construction of a Single Phase Transformer	433
	9.3	Induced EMF of an Ideal Transformer	437
	9.4	Phasor Diagram of an Ideal Transformer	440
	9.5	No-Load Operation of a Transformer	440
	9.6	On-Load Operation of a Transformer	441
	9.7	Phasor Diagram	442
	9.8	Equivalent Circuit of a Transformer	445
	9.9	Rating of a Transformer	447
	9.10	Load Factor	447
	9.11	Losses of a Transformer	448
	9.12	Efficiency of a Transformer	449
	9.13	Voltage Regulation	450
	9.14	Test on Single Phase Transformer	452
	9.15	Introduction to Three Phase Transformer	453
	9.16	Parallel Operation of Transformer	454
	9.17	Polarity of a Transformer	455
	9.18	Auto Transformer	455
	Solved	l Problems	456
	Proble	ems to Practice	468
	Multip	ple Choice Questions	473
10.	THR	EE PHASE INDUCTION MOTOR	476-516
	10.1	Introduction	476
	10.2	Relation between Electrical Angle and Mechanical Angle	477
	10.3	Synchronous Speed	478
	10.4	Construction of Induction Motor	479
	10.5	Working Principle of Induction Motor	480
	10.6	Slip	481
	10.7	Rotor and Stator EMF Equation	482

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

		Con	TENT xi
10.8	Energy Flow and Losses of Induction Motor	484	
10.9	Torque Developed and Maximum Torque in Induction Motor	485	
10.10	Torque-Slip Characteristic	486	
	Starter of Three Phase Induction Motor	489	
10.12	Speed Control of Induction Motor	491	
	Equivalent Circuit of Induction Motor	493	
	Phasor Diagram of Three Phase Induction Motor	494	
	Losses and Efficiency of Induction Motor	494	
	Tests on Three Phase Induction Motor	495	
	d Problems	496	
	ems to Practice	490 507	
Multi	ple Choice Questions	514	
11. SYNC	CHRONOUS MACHINE		517-555
11.1	Introduction	517	
11.2	Construction of Synchronous Machine	517	
11.3	Induced EMF	519	
11.4	Pitch Factor	520	
11.5	Distribution Factor	521	
11.6	Parallel Operation of Synchronous Generator	522	
11.7	Voltage Equation and Phasor Diagram of Synchronous Machine	523	
Solve	d Problems	524	
Probl	ems to Practice	547	
Multi	ple Choice Questions	555	
12. AN I	NTRODUCTION TO POWER SYSTEM		556-569
12.1	Introduction	556	
12.2	Basic Structure of Power System	556	
12.3	Protection in Power System	566	
12.5	Single Line Diagram of Power System	568	
	ems to Practice	568	
Multi	ple Choice Questions	568	
13. MEA	SUREMENT AND INSTRUMENTATION		570–627
13.1	Necessity of Measurement	570	
13.2	Some Definitions and Classification	571	
13.3	Errors in Measurement	574	
13.4	Different Electro-Mechanical Indicating Instruments	579	
13.5	AC Bridge: Measurement of Inductance Capacitance and Frequency	594	
13.6	Digital Instrument	597	
13.7	Current Transformer and Potential Transformer	598	
	d Problems	599	
	ems to Practice	619	
Multi	ple Choice Questions	623	

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

xii | Fundamentals of Electrical Engineering

14. BASIC ELECTRICAL TECHNOLOGY		
14.1	Introduction	628
14.2	Cables and Wires	628
14.3	Types of Cables	628
14.4	Battery	630
14.5	Domestic Wiring	631
14.6	Electric Lamps	632
14.7	Domestic Motors	636
14.8	Electric Shock	637
14.9	Earthing	638

Cambridge University Press 978-1-107-46435-3 — Fundamentals of Electrical Engineering S. B. Lal Seksena , Kaustuv Dasgupta Frontmatter <u>More Information</u>

Preface

Science is abstract. Mathematics is the language of science. The challenge of an engineer is to solve the real practical problems of life by applying knowledge of science. This book is fully devoted towards extending the knowledge of science to solve the real-life engineering problems in electrical engineering. Our intention has been to introduce practical electrical engineering challenges to budding engineers and enable them to solve the challenges of technology in a proper way.

We believe the book will be helpful to all the students of engineering of all streams at degree and diploma level. The chapters are organized to meet the requirements of the syllabus of introductory lessons on basic electrical engineering of all universities. We hope the beneficiaries will get to know the subject in an interactive fashion through the numerous solved problems included in the book.

We have tried to explain the theory so that the theorems become tangible and problems become explicit. The book is enriched with its overwhelming pedagogy and practical knowledge. The emphasis is placed on better illustrative understanding of theory related to day-to-day life experiences. The book is expected to be a complete guideline of fundamental knowledge on basic electrical engineering. This knowledge is essential for not only core electrical engineering students but also students from other streams of technical education dealing with power and energy.

This effort would not have been fruitful without the sincere advice of Dr Utpal Gangopadhyay, Dr Anup Mandol and Dr Jitendranath Bera. We are thankful to Dr Ambarnath Banerji, Dr Tirthankar Datta, Epsita Das and Kanishka Majumder for their encouragement throughout the work. We are grateful to our students Biswarup Ganguly, Subho Paul, Saurabh Bhattacharya, Ayan Das, Rajarshi Roy, Saibal Panda and Debasmita Sen for their engagement in selecting the problems and checking the proofs. We are also thankful to Sushovon, Anirban, Mayukh, Shourasis, Suddhasattwa and Jayanta for their technical cooperation. We are obliged to friends like Kingsuk and Abhijit, without their presence and support the work would not have been possible. And last but not the least we are thankful to all our students who have been the greatest exposure to the transaction of knowledge. We wish all the very best for their present and future.