Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

RIVER MECHANICS

SECOND EDITION

The second edition of Julien's textbook presents an analysis of rivers, from mountain streams to estuaries. The book is rooted in fundamental principles to promote sound engineering practice. State-of-the-art methods are presented to underline theory and engineering applications. River mechanics blends the dual concepts of water conveyance and sediment transport. Like the first edition, this textbook contains ample details on river equilibrium, river dynamics, bank stabilization, and river engineering. Complementary chapters also cover the physical and mathematical modeling of rivers. As well as being completely updated throughout, three new chapters have been added on watershed dynamics, hillslope stability, and stream restoration. Throughout the text, hundreds of examples, exercises, problems, and case studies assist the reader in learning the essential concepts of river engineering. The textbook is very well illustrated to enhance advanced student learning, while researchers and practitioners will find the book to be an invaluable reference.

PIERRE Y. JULIEN is Professor of Civil and Environmental Engineering at Colorado State University. He has 35 years of professional engineering experience in the fields of hydraulics and river sedimentation. Julien has authored more than 500 scientific contributions, including two textbooks (the first edition of *River Mechanics*, and *Erosion and Sedimentation* (Cambridge University Press 2010, second edition)), 25 book chapters and manuals, 185 refereed journal articles, and 230 professional presentations and conference papers. He has delivered 20 keynote addresses and guided more than 130 graduate students to completion of their engineering degrees. He is the recipient of the Hans Albert Einstein Award of the American Society of Civil Engineers (ASCE), delivered the Hunter Rouse Lecture of the Environmental and Water Resources Institute (ASCE) in 2015, and is a former editor for the ASCE *Journal of Hydraulic Engineering*.

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

> "This elegantly written book covers the major topics associated with water flow and sediment transport in rivers. It thoughtfully guides readers through descriptions and formulations of key physical processes, and offers many illustrations and worked examples to aid understanding. The book is a comprehensive companion to the author's book *Erosion and Sedimentation*, which focuses on alluvial sediment transport in rivers." —ROBERT ETTEMA, *Colorado State University*

> "As an engineering professional facing the challenges of sediment transport, I found the new edition of *River Mechanics* to be a great reference and a very useful resource. Its presentation of material has been substantially revised and expanded, including several new chapters. I especially liked the expanded treatment of watershed processes and new material on stream restoration. *River Mechanics* stands on its own and is even more useful in tandem with Pierre Julien's other book *Erosion and Sedimentation* as its companion. Having been familiar with the first edition from my days in graduate school, this new edition will undoubtedly prove to be an indispensable resource for students and practitioners alike." —MARK VELLEUX, *HDR*

"A book in river engineering taking the interested reader from its sources to the estuary, painted with concise problem statements and solved by adequate engineering methods and techniques. Prof. Julien's second edition can be fully recommended to graduate students, researches and practicing engineers in the fields of river basins, river mechanics, river flows, river stability, river equilibrium, river models, and river restoration. Prof. Julien should be praised for his integral approach, his technical formulation and his updated presentation involving both problems in practice and exercises of the complicated topic." —WILLI HAGER, *ETH Zurich*

"A rare must-read on modern river mechanics that covers the subject not only comprehensively and rigorously but also inspirationally. The author's philosophy 'from observations to physical understanding to mathematical modelling and numerical simulations' underpins every topic in the book, making it very clear and complete. Undoubtedly, this text will quickly become a benchmark source equally important to students, engineers and researchers. It will also be noteworthy to geoscientists and stream ecologists working at the borders between their disciplines and engineering. A genuine pleasure to read!"

-VLADIMIR NIKORA FRSE, University of Aberdeen

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

RIVER MECHANICS

SECOND EDITION

PIERRE Y. JULIEN Colorado State University

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107462779 DOI: 10.1017/9781316107072

© Pierre Y. Julien 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Julien, Pierre Y.
Title: River mechanics / Pierre Y. Julien, Colorado State University.
Description: Cambridge, United Kingdom : Cambridge University Press, [2018] | Includes bibliographical references and index.
Identifiers: LCCN 2017058314 | ISBN 9781107462779 (pbk.)
Subjects: LCSH: River engineering.
Classification: LCC TC405 .J85 2018 | DDC 627/.12—dc23 LC record available at https://lccn.loc.gov/2017058314

ISBN 978-1-107-46277-9 Paperback

Additional resources for this publication at www.cambridge.org/river2

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

Dedicated to my deceased mother Yolande and my brother Michel

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

Contents

Prej	face		<i>page</i> xi
Not	ation		XV
1	Physi	cal Properties	1
	1.1	Dimensions and Units	1
	1.2	Water Properties	4
	1.3	Sediment Properties	6
2	Mech	anics of Rivers	14
	2.1	Equations Governing River Flows	14
	2.2	Equations Governing Sediment Motion	33
	2.3	Why Do Rivers Form?	41
3	River	Basins	47
	3.1	River Basin Characteristics	47
	3.2	Excess Rainfall Precipitation	49
	3.3	Surface Runoff	60
	3.4	Sediment Sources and Sediment Yield	69
4	River	Basin Dynamics	83
	4.1	Rainfall Precipitation	83
	4.2	River Flow Duration Curves	96
	4.3	Flood Frequency Analysis	101
	4.4	Extreme Floods	108
5	Stead	y Flow in Rivers	116
	5.1	Steady-Uniform River Flow	116
	5.2	Steady Nonuniform River Flow	138
6	Unste	ady Flow in Rivers	153
	6.1	Solitary Wave Propagation	153
	6.2	Kinematic and Dynamic Waves	154
	6.3	Flood-Wave Celerity	155

159
164
165
167
177
177
186
195
198
205
205
214
230
230
247
260
260
262
276
292
293
299
311
330
330
333
338
340
348
348
351
358
375
379
379
388
397
402
408

			Contents	ix
	14.6	Dredging		418
	14.7	River Ice		421
15	River Estuaries			427
	15.1	Surface Waves		427
	15.2	River Estuaries		441
Bibliography		ohy		453
Index				493

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

Preface

Water is essential to sustain life and rivers are truly fascinating. Most prosperous cities are located near river confluences and river engineers must design structures to draw benefits from the fluvial system for developing societies. Ideally, scientists should develop new methods to improve engineering design, while practitioners must understand why certain structures work and others fail. Fundamentally, river mechanics requires understanding of hydrodynamic forces governing the motion of water and sediment in complex river systems. Additionally, the fluvial network must seek equilibrium in its ability to carry water and transport sediment through dynamic river systems. Nowadays, river engineers are concerned not only about urban drainage, flood control, and water supply, but also about water quality, contamination, and aquatic habitat. This textbook broadens this perspective by integrating knowledge of climatology, hydrology, and geomorphology.

This textbook has been prepared for engineers and scientists developing a broad-based technical expertise in river mechanics. It has been specifically designed for graduate students, for scholars actively pursuing scientific research, and for practitioners keeping up with recent developments in river engineering. The prerequisites for reading it and making use of it are simply a basic knowledge of undergraduate fluid mechanics and of partial differential equations. The textbook *Erosion and Sedimentation* from Cambridge University Press serves as prerequisite material for the graduate course, River Mechanics, that I have taught at Colorado State University over the past three decades.

My teaching philosophy has been detailed in my recent Hunter Rouse lecture (Julien, 2017). Sketch I.1 illustrates the key points that I seek to develop among my graduate students and postdoctoral advisees.

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

Sketch I.1. Professional development in river engineering

First, the essential complementarity of theory and practice cannot be overemphasized. Theory can best enhance engineering applications when the fundamental understanding has been grounded in practical observations. Second, there is a need to develop three main poles, where observations from field and laboratories lead to physical understanding, prior to mathematical calculations. Expertise is developed by expanding the overlapping areas of these three poles. Finally, while the processes of listening and reading are essential to the ability to learn and retain new knowledge, my teaching emphasizes also the need to develop verbal and written communication skills. The ability to express dynamic thinking is a tremendous asset for any successful professional career.

Rather than being a voluminous encyclopedia, this textbook scrutinizes selected methods which meet pedagogical objectives. There is sufficient material for a 45-h graduate-level course. Beside basic theory and lecture material, the chapters of this book contain various exercises and problems, data sets and examples, computer problems, and case studies. They illustrate specific aspects of the profession from theoretical derivations, through exercises and problems, to practical solutions with the analysis of case studies. Most problems can be solved with a few algebraic equations; others require the use of computers. No specific computer code or language is required. Instead of promoting the use of commercial software packages, I stimulate students' creativity and originality in developing their own computer programs. Throughout the book, a solid diamond (\blacklozenge) denotes the most important.

The book covers topics essentially from the mountains to the oceans:

Chapter 1 outlines the physical properties of water and sediment;

Chapter 2 reviews the governing equations of motion and sediment transport;

Chapter 3 describes river basins in terms of the source of water and sediment;

Chapter 4 looks at river basin dynamics;

Chapter 5 treats the steady-flow conditions in canals and rivers;

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

Preface

xiii

Chapter 6 delves into flood-wave propagation in rivers;

Chapter 7 introduces some numerical methods used to solve river engineering problems;

Chapter 8 copes with hillslope and riverbank stability;

Chapter 9 deals with riverbank protection measures;

Chapter 10 delineates the hydraulic geometry and equilibrium in alluvial rivers;

Chapter 11 explains the concepts of river dynamics and response;

Chapter 12 focuses on physical modeling techniques;

Chapter 13 provides essential knowledge on stream restoration;

Chapter 14 presents several river engineering techniques; and

Chapter 15 covers waves and tides in river estuaries.

My teaching has been greatly inspired by Drs. Marcel Frenette, Daryl B. Simons, Hunter Rouse, Yvon Ouellet, E. V. Richardson, Jean Louis Verrette, Steven R. Abt, Jose D. Salas, Richard Eykholt, HsiehWen Shen, Jim Ruff, Carl F. Nordin, Jean Rousselle, and Stan Schumm, as well as many others. They have greatly influenced my professional development and university teaching since 1979. I am also thankful to Drs. Phil Combs, Drew Baird, and Patrick O'Brien for sharing their practical expertise in river engineering. This book would not have been the same without contributions and suggestions from a couple of generations of graduate students at Colorado State University. They helped me tailor this textbook to meet their needs under the constraints of quality, concision, and affordability. Jean Parent patiently drafted all the figures. Finally, it has been a renewed pleasure to collaborate with Matt Lloyd, Esther Migueliz, and the Cambridge University Press production staff.

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

Notation

Symbols

a_x, a_y, a_z	Cartesian acceleration
a_r, a_{θ}, a_z	cylindrical accelerations
a	reference elevation
a	pier width
a _{cent}	centrifugal acceleration
$a_{\rm cor}$	Coriolis acceleration
a_{i}	incremental cross-section area
a_{j-1}, a_{j+1}	upstream/downstream boundary coefficients of the
	Leonard scheme
a_t	partial watershed area
a_{Θ}	projection of the submerged weight into the
	embankment plane
ā	wave amplitude
<i>a</i> , <i>b</i>	coefficients of the resistance equation
a, b, \hat{a}, \hat{b}	transform coefficients for duration curves
<i>A</i> , <i>B</i>	coefficient and exponent of the sediment rating curve
A	surface area
A_a	error amplitude factor
A_{sb}	surface area of a settling basin
A_t	watershed drainage area
$ ilde{A}, ilde{B}$	wave coefficients
b_r	river-bend coefficient
В	base channel width
BCF	bioconcentration factor
С	wave celerity
<i>c</i> *	dimensionless celerity

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

> xvi Notation group celerity \mathcal{C}_{G} undrained cohesion C_{μ} Chézy coefficient CCsediment concentration reference concentration C_a Ĉ cropping management factor $C_{\rm fl}$ Courant-Friedrichs-Lewy condition grid dispersion number C_k C_{0i} upstream sediment concentration runoff coefficient C_r $C_u = u\Delta t / \Delta x$ Courant number $C_v, C_w, C_{ppm}, C_{mg/l}$ sediment concentration by volume, weight, parts per million, and milligrams per liter particle size distribution, % finer by weight d_{10}, d_{50} effective riprap size d_m particle size d_{s} dimensionless particle diameter d_* D pipe/culvert diameter D headcut height D_d degree-days drop height of a grade-control structure D_p oxygen deficit $D_{\rm r}$ dissolved oxygen content DOе void ratio E specific energy E gross erosion $E_{\rm tons}$ expected soil loss in tons Ê soil loss per unit area \tilde{E} total energy of a wave E()exceedance probability ΔE specific energy lost in a hydraulic jump Darcy-Weisbach friction factor f Lacev silt factor fi f(t)infiltration rate F force \tilde{F} fetch length of wind waves buoyancy force F_{R} centrifugal force F_{c} F_D drag force

No	tation	
110	iuiion	

	•	•
XV	1	1

F_{g}	gravitational force
$\overline{F_h}$	hydrodynamic force
F_i	inertial force
F_L	lift force
F_M	momentum force
F_p	pressure force
$\dot{F_s}$	shear force in a bend
F_S	submerged weight of a particle
$F_{Vf} = V / \sqrt{gL_f}$	fish Froude number
F_w	weight of water
F_W	weight of a particle
F()	nonexceedance probability
$F_n(z)$	standard normal distribution
F(t)	cumulative infiltration
$F_a(t)$	actual cumulative infiltration
$F_p(t)$	potential cumulative infiltration
Fr	Froude number
g	gravitational acceleration
G	specific gravity of sediment
Gr	gradation coefficient
G_u	universal gravitation constant
h	flow depth
h_c	critical flow depth
h_d	downstream flow depth
h_n	normal flow depth
h_p	pressure head at the wetting front
h_r	rainfall depth
h_s	cumulative snowmelt
h_t	tailwater depth
h_u	upstream flow depth
h_w	partial elevation drop on a watershed
Δh	local change in flow depth
Н	Bernoulli sum
ΔH	energy loss over a meander wavelength
H_c	critical hillslope soil thickness
$H_o(\theta_m)$	Struve function
$\tilde{H}_s = 2\tilde{a}$	wave height
H_w	elevation drop on a watershed
i	rainfall intensity

xviii	Notation
i _b	riverbed infiltration rate
i _e	excess rainfall intensity
<i>i</i> _f	snowmelt rate
<i>i</i> ₃₀	maximum 30-min rainfall intensity
j	space index
$J_0(\theta_m)$	zeroth-order Bessel function of the first kind
k	decay coefficient
k_0	resistance parameter for laminar overland flow
k_s	surface roughness
$k_{s}^{'}$	grain roughness height
k_t	total resistance to laminar overland flow
\tilde{k}	wave number
Κ	saturated hydraulic conductivity
Κ	conveyance coefficient
Ŕ	soil erodibility factor
K_1, K_2	coefficients of the pier scour equation
K_b	ratio of maximum shear stress in a bend to a straight
	channel
K_c	riprap coefficient
K_d	dispersion coefficient
K _d	flood-wave diffusivity
K _d	soil-water partition coefficient or ratio of sorbed to
	dissolved metals
KE	average kinetic energy per unit area
$K_G(T)$	frequency factor of the Gumbel distribution
K _{num}	numerical dispersion coefficient
K _{oc}	soil-water partition coefficient normalized to organic
	carbons
$K_{\rm ow}$	octanol-water partition coefficient
K_p	plunging jet coefficient
$K_p(\gamma)$	frequency factor of the log-Pearson III distribution
K_S	ratio of the sediment volume
K _{sj}	submerged jet coefficient
$\Delta l = a/R$	mean annual migration rate
l_1 to l_4	moment arms
l_c, l_d	moment arms in radial stability of river bends
	sinuous river length
	held runoff length
L_a	abutment length

	Notation	xix
LC ₅₀	lethal concentration resulting in 50% mortality	
	depth of the wetting front	
L_0	normalized channel length	
L ₀	pier length	
L_p	river length	
L_r	length ratio	
	settling-basin length	
\hat{L}_{sb}	slope-length factor	
	fish length	
	runoff-model grid-cell size	
L_{M}	grid size of rainfall precipitation	
L_{R}	correlation length of a storm	
	length scale of a watershed	
L_W	length of arrested saline wedge	
m	exponent of the resistance equation	
m E	mass of the Earth	
т <u>е</u> тм	mass of the Moon	
m_{-}	sediment mass eroded from a single storm	
M	mass	
M	specific momentum	
M	snowmelt rate	
M_{f}	melt factor	
M_{1}, M_{2}	first and second moments of a distribution	
M, N	particle-stability coefficients	
MIN	ratio of lift to drag moments of force	
п	Manning coefficient <i>n</i>	
ñ	normal vector pointing outside of the control	
	volume	
ñ	wave number index	
N	number of points per wavelength	
N	number of storms	
$N_0(\theta_m)$	Neumann function, or the zeroth-order Bessel Y	
	function	
<i>O</i> ()	order of an approximation	
р	pressure	
<i>p</i> ()	probability density function	
p_{cl}	mean annual percentage lateral migration rate	
p_0	porosity	
p_{0e}	effective porosity	

XX	Notation
p_{0i}	initial water content
p_{0r}	residual water content
Δp_c	fraction of material coarser than d_{sc}
Δp_i	sediment size fraction
Δp_0	change in water content at the wetting front
P	wetted perimeter
<i>P</i> ()	probability
ΔP	power loss in a hydraulic jump
Ρ̂	conservation practice factor
<i>Р</i>	total power of a wave
PCB	polychlorinated biphenyls
PE	average potential energy per unit surface area
P_0	power loss
P_{Λ}	grid Peclet number
a	unit discharge
q_{bv}	unit sediment discharge by volume
$q_{bv}^* = q_{bv}/\omega_0 d_s$	dimensionless unit sediment discharge
q_l	lateral unit discharge
q_m	maximum unit discharge
q_s	unit sediment discharge
q_{si+1}, q_{si}	upstream and downstream unit sediment discharge
q_t	total unit sediment discharge
Q	river discharge
Q_{bv}	bed sediment discharge by volume
Q_p	peak discharge
Q_s	sediment discharge
r	radial coordinate
<i>r</i> *	dimensionless radius of curvature
<i>r</i> , <i>θ</i> , <i>z</i>	cylindrical coordinate system r lateral, θ
	downstream, and z upward
r _O	discharge ratio
Ŕ	risk
R	radius of curvature of a river
\hat{R}	rainfall-erosivity factor
ΔR_e	excess rainfall
$R_{\rm E}$	radius of the Earth
Re	Reynolds number
$\operatorname{Re}_* = u_* d_s / v$	grain shear Reynolds number
R_h	hydraulic radius

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

	Notation
R_m	minimum radius of curvature of a channel
$Ro = \omega / \kappa u_*$	Rouse number
S	slope
\hat{S}	slope-steepness factor
S_D	specific degradation
$S_{\rm DR}$	sediment delivery ratio
S_e	effective saturation
S_0, S_f, S_w	bed, friction, and water-surface slopes
S_{0x} , S_{0y}	bed-slope components in x and y
S_r, S_{wr}	radial water-surface slope
S_r^*	dimensionless radial slope
SF	safety factor
t	time
t	trapezoidal section parameter
Δt	time increment
Δt_s	time increment for sediment
t_a	cumulative time with positive air temperature
t_e	time to equilibrium
t_f	cumulative duration of snowmelt
t_f	fish swimming duration
t_r	rainfall duration
$t_r^* = t_r / \overline{t}_r$	normalized storm duration
t_t	transversal mixing time
t_v	vertical mixing time
Т	period of return of extreme events
T	wave period
T°	temperature
T_{50}	time for half the channel-width change
T_E	trap efficiency
T_s	windstorm duration
<i>u</i> , <i>v</i>	velocity along a vertical profile
\overline{u}	average flow velocity
$\mathcal{U}*$	shear velocity
u_{*c}	critical shear velocity
U_f	fish swimming velocity
U_w	wind speed
v_h	migration rate of headcuts
<i>v</i> _s	local velocity against the stone
v_x, v_y, v_z	local velocity components

xxi

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

xxii	Notation
V	mean flow velocity
V_c	critical velocity
V_x, V_v, V_z	Cartesian mean flow velocities in x , y , and z
V_{Δ}	densimetric velocity
$V_{ heta}$	downstream velocity in cylindrical coordinates
\forall	volume
\forall_v, \forall_t	volume of voids and total volume
W	channel width
W	weight of soil per unit width
W, W_0, W_e	active, initial and equilibrium channel width
W_m	meander width
W_0	overland plane width
<i>x</i> , <i>y</i> , <i>z</i>	coordinates usually x downstream, y lateral, and z
	upward
x_r, y_r, z_r	length ratios for hydraulic models
X _{max}	downstream distance with the maximum oxygen
	deficit
Δx	grid spacing
X	runoff length
X_c	reach length
X_e	equilibrium runoff length
X_{\max}	maximum endurance fish swimming distance
Yd, Yu	downstream and upstream wave amplitude
Y	sediment yield
Z_b	bed elevation
Z_W	water-surface elevation
Z*	dimensionless depth
Δz	scour depth

Greek Symbols

coefficient of the stage-discharge relationship
parameters of the gamma distribution
deflection angle of barges
Coriolis energy correction factor
phase angle
exponent of the stage-discharge relationship
bed particle-motion angle
momentum correction factor

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

xxiii

γ	specific weight of water
γ	skewness coefficient
Υm	specific weight of a water-sediment mixture
Ymd	dry specific weight of a water-sediment mixture
γ_s	specific weight of sediment
$\Gamma = \sqrt{1 + 4kK/U^2}$	dimensionless settling parameter
$\Gamma(x)$	gamma function
δ	angle between streamline and particle direction
$\delta_L = \ln(y_d/y_u)$	wave amplification over length L_0
ξ	ratio of exceedance probabilities
$\xi_r = W_r/h_r$	channel width-depth ratio
ξ	wave displacement in the x direction
η	sideslope stability number
$\tilde{\eta}$	wave surface elevation
$\zeta^k_{\tilde{p}}$	Fourier coefficients
ĸ	von Kármán constant
λ	streamline deviation angle
λ	wavelength
λ_f	snowmelt intensity
$\lambda_r = t_r/t_e$	hydrograph equilibrium number
λ_s	significant wavelength
Λ	meander wavelength
μ	dynamic viscosity of water
ν	kinematic viscosity of water
φ	angle of repose of bed material
ϕ	latitude
Φ	potential function for waves
ρ	mass density of water
$ ho_m$	mass density of a water-sediment mixture
$ ho_{md}$	dry mass density of a water-sediment mixture
$ ho_s$	mass density of sediment
$ ho_{ m sea}$	mass density of seawater
Δho	mass density difference
$\Pi = \ln[-\ln E(x)]$	double logarithm of exceedance probability
ω	settling velocity
ω_E	angular velocity of the Earth
Ω	sinuosity
Ω_R	ratio of centrifugal force to shear force in bends
θ	downstream orientation of channel flow

xxiv	Notation
heta	angular coordinate
$ heta_c$	critical angle of the failure plane
θ_i	jet angle measured from the horizontal
$\dot{\theta}_m$	maximum orientation of channel flow
θ_p	flow orientation angle against a pier
θ_r	raindrop angle
θ_0, Θ_0	downstream bed angle
Θ_1	sideslope angle
$\Theta = (t - t_r)/t_e$	dimensionless time
σ	stress components
σ	standard deviation
$\sigma = 2\pi L_0/\lambda$	dimensionless wave number
σ'	effective stress
σ_{g}	gradation coefficient
$\sigma_x, \sigma_v, \sigma_z$	normal stresses (negative pressure)
$\sigma_{\Delta t}$	standard deviation of dispersed material
$\sigma_{ heta}$	normal stress on a plane at an angle θ from the
	principal stresses
$ ilde{\sigma}$	angular frequency of surface waves
τ	shear stress
$ au_0, au_b$	bed shear stress
τ_{0x}, τ_{0y}	downstream and lateral bed shear stresses
$ au_{bn}$	bed shear stress at a normal depth
$ au_c$	critical shear stress
$ au_f$	failure shear strength of the soil
$ au_r$	radial shear stress
$ au_r^*$	dimensionless radial shear stress
$ au_s$	side shear stress
$ au_{sc}$	critical shear stress on a sideslope
$ au_w$	wind shear stress
$ au_{\scriptscriptstyle ZX}$	shear stress in the x direction in a plane
	perpendicular to z
$ au_*$	Shields parameter
$ au_{*_C}$	critical value of the Shields parameter
$ au_ heta$	tangential stress on a plane at an angle $\boldsymbol{\theta}$ from the
	principal stresses
$\psi = q/i_e L$	dimensionless discharge
Ψ	reduced variable

Cambridge University Press 978-1-107-46277-9 — River Mechanics Pierre Y. Julien Frontmatter <u>More Information</u>

No	tation

XXV

Superscripts and Diacritics

ñ	wave properties
\hat{C}	parameters of the universal soil-loss equation
ē	average value
h^k	time index k

Subscripts

a_r, a_{θ}	cylindrical coordinate components
a_x, a_z	Cartesian components
n_o, n_c	roughness values for overbank and main channel
$ au_c$	critical shear stress
h_{j+1}	space index at $j + 1$
L_m, Q_m	model value
L_p, Q_p	prototype value
L_r, Q_r	similitude scaling ratio
K_1, K_2, K_3	correction factors of the CSU scour equation
$W_{1/2}, h_{1/2}, S_{1/2}$	width, depth, and slope for half the discharge
t_{63}, X_{63}	time and distance scale for 63% of the sediment to deposit
ρ_m, γ_m	properties of a water-sediment mixture
ρ_{md}, γ_{md}	properties of a dry water-sediment mixture
ρ_s, γ_s	sediment properties