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We bound the complexity of the fibers of the generic linear projection of
a smooth variety in terms of a new family of invariants. These invariants
are closely related to ideas of John Mather, and we give a simple proof of
his bound on the Thom–Boardman invariants of a generic projection as an
application.
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1. Introduction

Let X � Pr be a smooth projective variety of dimension n over an algebraically
closed field k of characteristic zero, and let � W X ! PnCc be a general linear
projection. In this note we introduce some new ways of bounding the complexity
of the fibers of � . Our ideas are closely related to the groundbreaking work of
John Mather, and we explain a simple proof of his result [1973] bounding the
Thom–Boardman invariants of � as a special case.

This subject was studied classically for small n. In our situation the map
� will be finite and generically one-to-one, so we are asking for bounds on
the complexity of finite schemes, and the degree of the scheme is the obvious
invariant. Consider, for simplicity, the case c D 1. It is well-known that the
maximal degree of the fiber of a general projection of a curve to the plane is
2, and that the maximal degree of a fiber of a general projection of a smooth
surface to three-space is 3. These results were extended to higher dimension and
more general ground fields at the expense of strong hypotheses on the structure
of the fibers by Kleiman, Roberts, Ran and others.

In characteristic zero, the most striking results are those of John Mather. In
the case c D 1 and n � 14 he proved that a general projection � would be a stable
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2 ROYA BEHESHTI AND DAVID EISENBUD

map, and as a consequence he was able to show that, in this case, the fibers of �
have degree � nC1. More generally, in case n � 6c C7, or n � 6c C8 and c � 3,
he showed that the degree of any fiber of � is bounded by n=c C 1. He also
proved that for any n and c, the number of distinct points in any fiber is bounded
by n=c C 1; this is a special case of his result bounding the Thom–Boardman
invariants.

An optimist (such as the second author), seeing these facts, might hope that
the degree of the fibers of � would be bounded by n=c C 1 for any n and c.
However, Lazarsfeld [2004, II, Proposition 7.2.17] showed that the singularities
of �.X / could have very high multiplicity when n is large. His ideas can also
be used to prove that for large n and a sufficiently positive embedding of any
smooth variety X in a projective space, a general linear projection of X to PnCc

will have fibers of degree exponentially greater than n=c. The first case with
c D 1 in which his argument gives something interesting is n D 56, where it
shows that (if the embedding is sufficiently positive) then there will be fibers of
degree � 70. For a proof see [Beheshti and Eisenbud 2010, Proposition 2.2].

Although we know no upper bound on the degrees of the fibers of � that
depends only on n and c, we showed in [Beheshti and Eisenbud 2010] that there
is a natural invariant of the fiber that agrees “often” with the degree and that is
always bounded by n=c C 1.

In this note, we generalize the construction there and give a general mechanism
for producing such invariants. Our approach is closely related to that of John
Mather.

Here is a sample of the results we prove. We first ask how “bad” a finite
scheme Y can be and still appear inside the fiber of the generic projection of a
smooth n-fold to PnCc? Our result is written in terms of the degree of Y and the
degree of the tangent sheaf to Y , defined as

�Y D Hom�Y
.�Y=K ;�Y /:

We prove the following in Theorem 4.1.

Theorem 1.1. Let X � Pr be a smooth projective variety of dimension n, and
let Y be a scheme of dimension zero. If for a general linear projection �† W X !
PnCc , there is a fiber of �† that contains Y as a closed subscheme, then

deg Y C 1

c
deg �Y � n

c
C 1:

This result easily implies (the special case for projections) of Mather’s result
bounding the Thom–Boardman invariants (itself a special case of the transversal-
ity theorem he proves.) This is because, as Mather shows, the Thom Boardman
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FIBERS OF PROJECTIONS AND SUBMODULES OF DEFORMATIONS 3

invariant of a germ at a point is determined by knowing whether certain sub-
schemes are or are not contained in the fiber. By way of example, we carry out
the proof of the following useful special case:

Corollary 1.2 (Mather). Let X � Pr be a smooth subvariety of dimension n,
and let � W X ! PnCc be a general projection with c � 1. Let p be a point in
PnCc , and assume ��1.p/ consists of r distinct points q1; : : : ; qr . Denote by di

the corank of � at qi . Then

X
1�i�r

�d2
i

c
C di C 1

�
� n

c
C 1:

In particular, the number of distinct points in every fiber is bounded by n=c C 1.

Mather’s approach to this theorem works because the subschemes involved in
defining the Thom–Boardman singularities have no moduli—there is a discrete
family of “test schemes”. In other situations it is much more common for
a certain “type” of subscheme to appear in a fiber, although the subschemes
themselves have nontrivial moduli. We can prove a result (Theorem 4.2) taking
the dimension of the moduli space into account that sometimes gives sharper
results. Suppose, for example, that you know that a generic projection from the
smooth n-fold X to PnC1 always has a fiber isomorphic to one of the schemes
YF WD Spec kŒx;y; z�=F C .x;y; z/5, where F varies over all nonsingular cubic
forms. This “truncated cone over an elliptic curve”, which has degree 31, varies
with one parameter of moduli. The only obvious subscheme common to all the
YF is Spec kŒx;y; z�=.x;y; z/3. With Theorem 1.1 we get the bound n � 36.
But if we apply Theorem 4.2 to the 1-dimensional moduli family of YF , we get
the much stronger bound n � 69.

One motivation for the study of the complexity of the fibers of general projec-
tions comes from the Eisenbud–Goto conjecture [1984], which states that the
regularity of a projective subvariety of Pr is � deg.X /� codim.X /C 1. An
approach to this conjecture, which has been used to prove the conjecture for
smooth surfaces and to prove a slightly weaker bound for smooth varieties of
dimension at most 5 (see [Lazarsfeld 1987] and [Kwak 2000]), is to bound the
regularity of the fibers of general projections.

Conjecture 1.3. Let X � Pr be a smooth projective variety of dimension n, and
let � W X ! PnCc be a general linear projection. If Z � X is any fiber, then the
Castelnuovo–Mumford regularity of Z as a subscheme of Pr is at most n=c C 1.

The truth of the conjecture would imply that the Eisenbud–Goto conjecture
holds up to a constant that depends only on n and r and is given explicitly in
[Beheshti and Eisenbud 2010]. If true, the conjecture is sharp in some cases: The
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4 ROYA BEHESHTI AND DAVID EISENBUD

“Reye Construction” gives an Enriques surface in P5 whose projections to P3

all have 3 colinear points in some fibers; and an argument of Lazarsfeld shows
that if X is a Cohen–Macaulay variety of codimension 2 in PnC2, and if X is
not contained in a hypersurface of degree � n, then any projection of X into
PnC1 has fibers of length nC1. In this case any fiber is colinear. Since a scheme
consisting of nC1 colinear points has regularity nC1, we get fibers of regularity
D n C 1 in these examples (see [Beheshti and Eisenbud 2010] for proofs.)

2. Notation

We will work over an algebraically closed field k of characteristic zero. If T is a
coherent sheaf of finite support on some scheme, we identify T with its module
of global sections and write deg T for the vector space dimension of this module
over k.

We fix r � 2, and we denote by Gk the Grassmannian of linear subvarieties of
codimension k in Pr . Let X be a smooth projective variety of dimension n, and let
c � 1. A linear projection X ! PnCc is determined by a sequence l1; : : : ; lnCcC1

of n C c C 1 independent linear forms on Pr that do not simultaneously vanish
at any point of X . Associated to such a projection is the projection center †, the
linear space of codimension n C c C 1 defined by the vanishing of the li . The
map taking a linear projection to the associated projection center makes this set
of projections into a PGL.n C c/-bundle over the subset U � GnCcC1 of planes
† that do not meet X .

We denote by �† the linear projection X ! PnCc with center †. The
morphism �† is birational, and its fibers are all zero-dimensional. The fibers of
� have the form X \ƒ, where ƒ 2 GnCc contains †.

We will keep this notation throughout this paper.

3. Measuring the complexity of the fibers

Let X � Pr be a smooth subvariety of dimension n, and let H be a subscheme
of GnCc . For Œƒ� 2 H , set Z Dƒ\ X , and assume dim Z D 0. Consider the
restriction map

� W TGnCc ;Œƒ� D H 0.Nƒ=Pr /! Nƒ=Pr jZ
Let VG � Nƒ=Pr jZ be the image of � and let VH D �.TH ;Œƒ�/ � VG . Denote
by �Z VH the �Z -submodule of Nƒ=Pr jZ generated by VH , and let Q be the
quotient module:

0 ! �Z VH ! Nƒ=Pr jZ ! Q ! 0:

Here is our main technical result:
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FIBERS OF PROJECTIONS AND SUBMODULES OF DEFORMATIONS 5

Theorem 3.1. Let X � Pr be a smooth subvariety of dimension n, and let H

be a locally closed irreducible subvariety of GnCc , c � 1. Assume that, for a
general Œ†� in GnCcC1, there is Œƒ� 2 H such that † � ƒ. Then for a general
Œƒ� 2 H , either ƒ\ X is empty, or

deg Q � n C c:

The proof uses the following result, which will also be used in the proof of
Theorem 5.2.

Lemma 3.2. Let X be a smooth variety of dimension n in Pr , and let H be
a smooth locally closed subvariety of GnCc . Assume that for a general Œ†� in
GnCcC1, there is Œƒ�2 H such that†�ƒ. Let Œ†� be a general point of GnCcC1

and let Œƒ� be a point of H such that †�ƒ. If Q is as in Theorem 3.1, then the
map

H 0.Nƒ=Pr ˝ �ƒ.�1//! Q

is surjective.

Proof. The restriction map Nƒ=Pr ! Nƒ=Pr jZ followed by the surjective map
Nƒ=Pr jZ ! Q gives a surjective map of �ƒ-modules Nƒ=Pr ! Q. We denote
the kernel by F :

0 ! F ! Nƒ=Pr ! Q ! 0:

We first show that the restriction map H 0.F / ! H 0.F j†/ is surjective.
Consider the incidence correspondence

J D f.Œ†�; Œƒ�/ W†�ƒ; Œƒ� 2 H g � GnCcC1 � H;

and assume that Œ†� is a general point of GnCcC1. By our assumption the
projection map �1 W J ! GnCcC1 is dominant. Since H is smooth, and since the
projection map �2 W J ! H makes J a Grassmannian bundle over H , the space
J is smooth as well. Thus by generic smoothness, �1 is smooth at .Œ†�; Œƒ�/, and
so the map on Zariski tangent spaces TJ ;.Œ†�;Œƒ�/ ! TGnCcC1;Œ†� is surjective.

The short exact sequence of �†-modules

0 ! N†=ƒ ! N†=Pr ! Nƒ=Pr j† ! 0

gives a surjective map H 0.N†=Pr / ! H 0.Nƒ=Pr j†/. Note that since † is
general, †\ X D ∅, and since Q is supported on ƒ\ X , F j† D Nƒ=Pr j†. It
follows from the commutative diagram

TJ ;.Œ†�;Œƒ�/
�� ��

��

TGnCcC1;Œ†� D H 0.N†=Pr / �� �� H 0.Nƒ=Pr j†/
D

��
TH ;Œƒ�

�� H 0.F / �� H 0.F j†/
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6 ROYA BEHESHTI AND DAVID EISENBUD

then that H 0.F /! H 0.F j†/ is surjective.
Consider now the short exact sequence

0 ! F ˝ �ƒ.�1/! F ! F j† ! 0:

Since F j† D Nƒ=Pr j†, we have H 1.F j†/D H 1.Nƒ=Pr j†/D 0. Since

H 0.F /! H 0.F j†/
is surjective, we get H 1.F ˝ �ƒ.�1//Š H 1.F /. Therefore, the image of the
map H 0.Nƒ=Pr /!Q is the same as that of the map H 0.Nƒ=Pr ˝�ƒ.�1//!Q,
and thus by Proposition 3.3 both of these maps are surjective. �
Proposition 3.3 [Beheshti and Eisenbud 2010, Proposition 3.1]. Suppose that
ı W A ! B is an epimorphism of coherent sheaves on Pr , and suppose that A is
generated by global sections. If ı.H 0.A//� H 0.B/ has the same dimension as
ı.H 0.A.1///� H 0.B.1//, then dim B D 0 and ı.H 0.A.m///D H 0.B.m//Š
H 0.B/ for all m � 0. �
Proof of Theorem 3.1. Assume that for a general Œƒ� in H , ƒ\ X is nonempty.
It follows from Lemma 3.2, applied to the smooth locus in H , that the map
H 0.Nƒ=Pr ˝ �ƒ.�1//! Q is surjective. Therefore,

deg Q � dim H 0.Nƒ=Pr ˝ �ƒ.�1//D dim H 0.�nCc
ƒ

/D n C c:

�
Since we have

.n C c/ deg Z D deg Nƒ=Pr jZ D deg �Z VH C deg Q;

where Z Dƒ\ X , it follows from the above theorem that any upper bound on
the degree of �Z VH puts some restrictions on the fibers of �† for general †.

Corollary 3.4. Let X � Pr be a smooth projective variety of dimension n, and
let c � 1 be an integer. Let H be a locally closed irreducible subvariety of GnCc ,
and assume that for a general projection �†, there is Œƒ� 2 H that contains †.
Then for a general Œƒ� 2 H

deg Z � deg �Z VH

n C c
C 1:

where Z Dƒ\ X .

For example, if we apply Theorem 3.1 to the scheme H � GnCc whose points
correspond to planes that intersect X in schemes of length � l , for some integer
l � 1, we recover the central result of [Beheshti and Eisenbud 2010]. Recall that
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FIBERS OF PROJECTIONS AND SUBMODULES OF DEFORMATIONS 7

for varieties X;Y � Pr that meet in a scheme Z D X \ Y of dimension zero,
with codim Y � dim X > 0 we there defined q.X;Y / to be

q.X;Y /D
deg coker Hom.�Z=X =�2

Z=X
;�Z /! Hom.�Y=P=�2

Y=P
;�Z /

codim Y � dim X
:

For example, if X;Y are smooth and Z is a locally complete intersection scheme
then q.X;Y /D deg X \Y , and more generally q is a measure of the difficulty of
flatly deforming Y in such a way that Z D X \ Y deforms flatly as well. Using
this notation, and applying Theorem 3.1 to the fiber of a general projection, we
derive:

Theorem 3.5. If X is a smooth projective variety of dimension n in Pr , and if
� W X ! PnCc is a general projection, then every fiber X \ƒ, where ƒ is a
linear subspace containing the projection center in codimension 1, satisfies:

q.X; ƒ/� n

c
C 1:

�
In [Beheshti and Eisenbud 2010] we derived explicit bounds on the lengths of
fibers from this result.

3.1. A Problem. Fix positive integers l and m, and let H be the reduced sub-
scheme of GnCc consisting of those planes ƒ such that degƒ \ X D l and
deg�ƒ\X D m. Assume that for a general projection � W†! PnCc , there is a
fiber ƒ\ X such that Œƒ� is in H . We would like to use Corollary 3.4 in this
case to get a bound on the fibers of general projections stronger than, say, that of
Corollary 1.2 in [Beheshti and Eisenbud 2010].

Assume that Œƒ� 2 H is a general point, and let VH be the image of TH ;Œƒ�

in Nƒ=Pr jZ . Then since we assume that the length of the intersection with
X is fixed for all points of H , VH is a subspace of NZ=X . If we denote by
V 0 � NZ=X the tangent space to the space of first order deformations of Z in
X that keep the degree of �Z fixed, then VH � V 0.

If Z is an arbitrary zero-dimensional subscheme of a smooth variety X , then
V 0 is not necessarily a submodule of NZ=X . For example, if we let Z be the
subscheme of A2 defined by the ideal I D hx4 Cy4; xy.x�y/.xCy/.x�2y/i,
then Z is supported at the origin and is of degree 20. Using Macaulay 2, we find
that the space of deformations of Z in A2 that fix the degree of �Z is a vector
space of dimension 17, but the �Z -module generated by this space is a vector
space of dimension 18.

Is there an upper bound on the dimension of the submodule generated by VH

that is stronger than deg NZ=X ? In the special case, when Z is curvilinear of
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8 ROYA BEHESHTI AND DAVID EISENBUD

degree m (so deg�Z D m�1), V 0 is a submodule of degree m dim X �.m�1/<

deg NZ=X . But if Z is of arbitrary degree and not curvilinear, we currently know
no bound that could improve Corollary 1.2 in [Beheshti and Eisenbud 2010].

4. General projections whose fibers contain given subschemes

Fix a zero-dimensional scheme Y . We wish to give a bound on invariants of Y

that must hold if Y appears as a subscheme of a fiber of the general projection of
X to PnCc . Our result generalizes a key part of the proof of Mather’s theorem
bounding the Thom–Boardman invariants of a general projection.

In the following we write �Y for the tangent sheaf �Y WD Hom�Y
.�Y ;�Y /

of Y , and similarly for X .

Theorem 4.1. Let X � Pr be a smooth projective variety of dimension n, and
let Y be a scheme of dimension zero. If for a general linear projection �† W X !
PnCc , there is a fiber of �† that contains Y as a closed subscheme, then

deg Y C 1

c
deg �Y � n

c
C 1:

Proof. Let Hom.Y;X / be the space of morphisms from Y to X , and let I �
Hom.Y;X / � GnCc be the incidence correspondence parametrizing the pairs
.Œi �; Œƒ�/ such that i is a closed immersion from Y to ƒ\ X . Denote by H the
image of I under the projection map Hom.Y;X /� GnCc ! GnCc . We give H

the reduced induced scheme structure.
Let .Œi �; Œƒ�/ be a general point of I , and set Z WDƒ\X . We consider Y as a

closed subscheme of X , and we let NY=X D Hom.IY=X ;�Y / denote the normal
sheaf of Y in X . The Zariski tangent space to Hom.Y;X / at Œi � is isomorphic to
H 0.�X jY /; see [Kollár 1996, Theorem I.2.16].

Denote by M 0 the �Y -submodule of Nƒ=Pr jY generated by the image of the
restriction map from the Zariski tangent space:

�Y W TH ;Œƒ�
� � �� H 0.Nƒ=Pr / �� Nƒ=Pr jY :

We first claim that deg M 0 � .n C c/ deg Y � .n C c/. Let Q0 be the quotient
of Nƒ=Pr jY by M 0:

0 ! M 0 ! Nƒ=Pr jY ! Q0 ! 0:

Denote by M the submodule of Nƒ=Pr jZ generated by the image of

�Z W TH ;Œƒ�
� � �� H 0.Nƒ=Pr / �� Nƒ=Pr jZ ;
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FIBERS OF PROJECTIONS AND SUBMODULES OF DEFORMATIONS 9

and let Q be the cokernel:

0 ! M ! Nƒ=Pr jZ ! Q ! 0:

The surjective map Nƒ=Pr jZ ! Nƒ=Pr jY carries M into M 0, and thus induces
a surjective map Q ! Q0. Since by Theorem 3.1, deg Q � n C c, we have
deg Q0 � n C c, and so

deg M 0 D deg Nƒ=Pr jY � deg Q0 � .n C c/ deg Y � .n C c/:

This establishes the desired lower bound.
We next give an upper bound on deg M 0. Since X is smooth, dualizing the

surjective map �X jY !�Y into �Y , we get an injective map �Y ! �X jY and
an exact sequence

0 �� �Y
�� �X jY � �� NY=X :

Let �1 and �2 denote the projections maps from I to Hom.X;Y / and H respec-
tively. We have a diagram

TI;.Œi�;Œƒ�/
d�2 �� ��

d�1

��

TH ;Œƒ�
� � �� TGnCc ;Œƒ� D H 0.Nƒ=Pr /

�Y

��

THom.X ;Y /;Œi� D �X jY
�

��
NY=X

 �� Nƒ=Pr jY
where  is obtained by dualizing the map Iƒ=Pr ˝ �X ! IY=X into �Y .

It follows from the diagram that �Y .TH ;Œƒ�/ is contained in the image of
 ı�. Since the image of  ı� W �X jY ! Nƒ=Pr jY is a submodule of Nƒ=Pr jY ,
M 0 is contained in the image of  ı � as well. Thus the degree of M 0 is less
than or equal to the degree of the image of �, that is

deg M 0 � deg �X jY � deg �Y D n deg Y � deg �Y :

Comparing this upper bound with the lower bound we got earlier completes the
proof. �

Theorem 4.1 was inspired by the results of Mather on the Thom–Boardman
invariants. Mather shows that the Thom–Boardman symbol of a germ of a map
is determined by which of a certain discrete set of different subschemes the
fiber contains. These are the schemes of the form Spec kŒx1; : : : ;xn�=.x1/

t1 C
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10 ROYA BEHESHTI AND DAVID EISENBUD

.x1;x2/
t2 C � � � C .x1; : : : ;xn/

tn . His result that the general projection is trans-
verse to the Thom–Boardman strata is closely related (see also Section 5.) We
illustrate by proving the special case announced in the introduction.

Proof of Corollary 1.2. For d � 1, let Ad D kŒx1;:::;xd �

m2 where m is the ideal
generated by x1; : : : ;xd . If q 2 X is a point of corank d for the projection � ,
then there is a surjective map ���1.�.q//;q ! Ad .

Fix an integer r � 1, and fix a sequence of coranks d1 � � � � � dr � 0. If we
denote by Y the disjoint union of the schemes Spec Adi

; 1 � i � r , then we have
deg Y D P

1�i�r .di C 1/ and deg �Y D P
1�i�r d2

i .
Assume now that for a general linear projection � W X ! PnCc , there is a

fiber consisting of at least r points q1; : : : ; qr such that the corank of � at qi

is at least di for 1 � i � r . Then for a general linear projection with center †,
there is a fiber X \ƒ and a closed immersion i W Y !ƒ\ X . It follows from
the previous theorem that

X
1�i�r

.
d2

i

c
C di C 1/D deg Y C 1

c
deg �Y � n

c
C 1:

�
Except in a few situations, such as the Thom–Boardman computation above, it

is more likely that for a general projection the fiber might be “of a certain type”,
or contain one of a given family of special subschemes. In the next theorem, we
generalize Theorem 4.1 to such a family of zero-dimensional schemes. We have
separated the proofs because this version involves considerably more technique.
But we do not repeat the final part of the argument, since it is the same as before.

Theorem 4.2. Let X � Pr be a smooth projective variety of dimension n.
Suppose that B is an integral scheme of dimension m and that p W U ! B

is a flat family of zero dimensional schemes over B. For a point b 2 B, let
�Ub

D Hom.�Ub
;�Ub

/. If for a general projection �† W X ! PnCc , c � 1, there
is a fiber Ub of p W U ! B such that Ub can be embedded in one of the fibers of
�†, then �

1 � m

c

�
deg Ub C min

b2B

n
1

c
deg �Ub

o
� n

c
C 1:

Proof. Passing to a desingularization, we can assume that B is smooth. Let
HomB.U;B � X / be the functor

HomB.U;X � B/.S/D fB-morphisms W U �B S ! .X � B/�B Sg:
By [Kollár 1996, I.1.10], this functor is represented by a scheme HomB.U;X �B/

over B that is isomorphic to an open subscheme of Hilb.U � X=B/. The closed
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