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Preface to the first edition*

This text is written for those who have studied calculus in the sixth form at
school, and are now ready to review that mathematics rigorously and to seek
precision in its formulation. The question sequence given here tackles the key
concepts and ideas one by one, and invites a self-imposed precision in each
area. At the successful conclusion of the course, a student will have a view of
the calculus which is in accord with modern standards of rigour, and a sound
springboard from which to study metric spaces and point set topology, or
multi-dimensional calculus.

Generations of students have found the study of the foundations of the
calculus an uncomfortable business. The reasons for this discomfort are
manifold.

(1) The student coming from the sixth form to university is already familiar
with Newtonian calculus and has developed confidence in the subject by
using it, and experiencing its power. Its validity has been established for
him/her by reasonable argument and confirmed by its effectiveness. It is
not a source of student uncertainty and this means that an axiomatic and
rigorous presentation seems to make heavy weather of something which
is believed to be sound, and criticisms of Newtonian calculus seem to be
an irritating piece of intellectual nit-picking.

(2) Atan age when a student’s critical capacity is at its height, an axiomatic
presentation can have a take-it-or-leave-it quality which feels humiliating:
axioms for the real numbers have none of the ‘let’s-play-a-game’
character by which some simpler systems appeal to the widespread
interest in puzzles. The bald statement of axioms for the real numbers
covers up a significant process of decision-making in their choice, and the
Axiom of Completeness, which lies at the heart of most of the main
results in analysis, seems superfluous at first sight, in whatever form it is
expressed.

* The text of this preface was revised slightly for the second edition.

Xiii
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Xiv Preface to the first edition

(3) Even when the axiom system has been accepted, proofs by contradiction
can be a stumbling block, either because the results are unbelievable, as
in the case of irrationality or uncountability, or because they make heavy
weather of such seemingly obvious results as the theorem that a
convergent sequence cannot have two limits.

(4) Definitions, particularly those of limits and continuity, appear strangely
contrived and counter-intuitive.

There are also discomforts of lesser moment which none the less make the
subject indigestible:

(5) the abstract definition of a function (when most students have only used
the word function to mean a formula),

(6) the persistent use of inequalities in argument to tame infinity and
infinitesimals,

(7) and proofs by induction (which play an incidental r6le in most school
courses).

(8) The student who has overcome these hurdles will find that some of the
best textbooks will present him/her with exercises at the end of each
chapter which are so substantial that it could be a term’s work to
complete even those associated with three hours of lectures.

(9) The student who seeks help in the bibliography of his/her current text
may find that the recommended literature is mostly for ‘further reading’.

Most of these difficulties are well-attested in the literature on mathematical
education. (See for example articles published in Educational Studies in
Mathematics throughout the 1980s or the review article by David Tall (1992).)

With these difficulties in mind we may wonder how any students have
survived such a course! The questions which they ask analysis lecturers may
reveal their methods. Although I believed, as an undergraduate, that I was
doing my best, I remember habitually asking questions about the details of the
lecturer’s exposition and never asking about the main ideas and results. I
realise now that I was exercising only secretarial skills in the lecture room,
and was not involved in the overall argument. A more participatory style of
learning would have helped. Many of those who have just completed a degree
in mathematics will affirm that 0.9 recurring is not the limit of a sequence, but
an ordinary number less than 1! This is not evidence of any lack of
intelligence: through the nineteenth century the best mathematicians stumbled
because of the difficulty of imagining dense but incomplete sets of points and
the seeming unreality of continuous but non-differentiable functions. There
was real discomfort too in banning the language of infinitesimals from the
discussion of limits. In their difficulties today, students have much in common
with the best mathematicians of the nineteenth century.
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Preface to the first edition XV

It has been said that the most serious deficiency in undergraduate
mathematics is the lack of an existence theorem for undergraduates! Put in
other words, by an eminent educationalist, ‘If I had to reduce all of
educational psychology to just one principle, I would say this: the most
important single factor influencing learning is what the learner already knows.
Ascertain this, and teach him accordingly.” (Ausubel, 1968). There is a degree
of recognition of this principle in virtually every elementary text on analysis,
when, in the exercises at the end of a chapter, the strictly logical order of
presentation is put aside and future results anticipated in order that the student
should better understand the points at issue. The irrationality of 7 may be
presumed before the number itself has been defined. The trigonometric,
exponential and logarithmic functions almost invariably appear in exercises
before they have been formally or analytically defined. In this book, my first
concern, given the subject matter, has been to let students use what they
already know to generate new concepts, and to explore situations which invite
new definitions. In working through each chapter of the book the student will
come to formulate, in a manner which respects modern standards of rigour,
part of what is now the classical presentation of analysis. The formal
achievements of each chapter are listed in summaries, but on the way there is
no reluctance to use notions which will be familiar to students from their
work in the sixth form. This, after all, is the way the subject developed
historically. Sixth-form calculus operates with the standards of rigour which
were current in the middle of the eighteenth century and it was from such a
standpoint that the modern rigorous analysis of Bolzano, Cauchy, Riemann,
Weierstress, Dedekind and Cantor grew.

So the first principle upon which this text has been constructed is that of
involving the student in the generation of new concepts by using ideas and
techniques which are already familiar. The second principle is that
generalisation is one of the least difficult of the new notions which a student
meets in university mathematics. The judiciously chosen special case which
may be calculated or computed, provides the basis for a student’s own
formulation of a general theorem and this sequence of development (from
special case to general theorem) keeps the student’s understanding active
when the formulation of a general theorem on its own would be opaque.

The third principle, on which the second is partly based, is that every
student will have a pocket calculator with ‘scientific’ keys, and access to
graph drawing facilities on a computer. A programmable calculator with
graphic display will possess all the required facilities.

There is a fourth principle, which could perhaps be better called an
ongoing tension for the teacher, of weighing the powerful definition and
consequent easy theorem on the one hand, against the weak definition (which
seems more meaningful) followed by the difficult theorem on the other.
Which is the better teaching strategy? There is no absolute rule here. However
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XVvi Preface to the first edition

I have chosen ‘every infinite decimal is convergent’ as the axiom of
completeness, and then established the convergence of monotonic bounded
sequences adapting an argument given by P. du Bois-Reymond in 1882, and
used by W. F. Osgood, 1907. Certainly to assume that monotonic bounded
sequences are convergent and to deduce the convergence of the sequence for
an infinite decimal takes less paper than the converse, but I believe that, more
often than has usually been allowed, the combination of weaker definition and
harder theorem keep the student’s feet on the ground and his/her
comprehension active.

Every mathematician knows theorems in which propositions are proved
to be equivalent but in which one implication is established more easily than
the other. A case in point is the neighbourhood definition of continuity
compared with the convergent sequence definition. After considerable
experience with both definitions it is clear to me that the convergent sequence
definition provides a more effective teaching strategy, though it is arguable
that this is only gained by covert use of the Axiom of Choice. (A detailed
comparison of different limit definitions from the point of view of the learner
is given in ch. 14 of Hauchart and Rouche.) As I said earlier, the issue is not
one of principle, but simply an acknowledgement that the neat piece of logic
which shortens a proof may make that proof and the result less
comprehensible to a beginner. More research on optimal teaching strategies is
needed.

It sometimes seems that those with pedagogical concerns are soft on
mathematics. I hope that this book will contradict this impression. If
anything, there is more insistence here than is usual that a student be aware of
which parts of the axiomatic basis of the subject are needed at which juncture
in the treatment.

The first two chapters are intended to enable the student who needs them
to improve his/her technique and his/her confidence in two aspects of
mathematics which need to become second nature for anyone studying
university mathematics. The two areas are those of mathematical induction
and of inequalities. Ironically, perhaps, in view of what I have written above,
the majority of questions in chapter 2 develop rudimentary properties of the
number system from stated axioms. These questions happen to be the most
effective learning sequences I know for generating student skills in these
areas. My debt to Landau’s Foundations of Analysis and to Thurston’s The
Number-system will be evident. There is another skill which these exercises
will foster, namely that of distinguishing between what is familiar and what
has been proved. This is perhaps the key distinction to be drawn in the
transition from school to university mathematics, where it is expected that
everything which is to be assumed without proof is to be overtly stated.
Commonly, a first course in analysis contains the postulational basis for most
of a degree course in mathematics (see appendix 1). This justifies lecturers
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Preface to the first edition XVvii

being particularly fussy about the reasoning used in proofs in analysis. In the
second chapter we also establish various classical inequalities to use in later
work on convergence.

In the third chapter we step into infinite processes and define the
convergence of sequences. It is the definition of limit which is conventionally
thought to be the greatest hurdle in starting analysis, and we define limits first
in the context of null sequences, the preferred context in the treatments of
Knopp (1928) and Burkill (1960). In order to establish basic theorems on
convergence we assume Archimedean order. When the least upper bound
postulate is used as a completeness axiom, it is common to deduce
Archimedean order from this postulate. Unlike most properties established
from a completeness axiom, Archimedean order holds for the rational
numbers, and indeed for any subfield of the real numbers. So this proof can
mislead. The distinctive function of Archimedean order in banishing infinite
numbers and infinitesimals, whether the field is complete or not, is often
missed. The Archimedean axiom expressly forbids oo being a member of the
number field. Now that non-standard analysis is a live option, clarity is
needed at this point. In any case, the notion of completeness is such a hurdle
to students that there is good reason for proving as much as possible without
it. We carry this idea through the book by studying sequences without
completeness in chapter 3 and with completeness in chapters 4 and 5;
continuous functions and limits without completeness in chapter 6 and with
completeness in chapter 7; differentiation without completeness in chapter 8
and with completeness in chapter 9.

The fourth chapter is about the completeness of the real numbers. We
identify irrational numbers and contrast the countability of the rationals with
the uncountability of the set of infinite decimals. We adopt as a completeness
axiom the property that every infinite decimal is convergent. We deduce that
bounded monotonic sequences are convergent, and thereafter standard results
follow one by one. Of the possible axioms for completeness, this is the only
one which relates directly to the previous experience of the students. With
completeness under our belt, we are ready to tackle the convergence of series
in chapter 5.

The remaining chapters of the book are about real functions and start
with a section which shows why the consideration of limiting processes
requires the modern definition of a function and why formulae do not provide
a sufficiently rich diet of possibilities. By adopting Cantor’s sequential
definition of continuity, a broad spectrum of results on continuous functions
follows as a straightforward consequence of theorems about limits of
sequences. The second half of chapter 6 is devoted to reconciling the
sequential definitions of continuity and limit with Weierstrass’ neighbourhood
definitions, and deals with both one- and two-sided limits. These have been
placed as far on in the course as possible. There is a covert appeal to the
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XViii Preface to the first edition

Axiom of Choice in the harder proofs. Chapter 6 builds on chapter 3, but does
not depend on completeness in any way. In chapter 7 we establish the difficult
theorems about continuity on intervals, all of which depend on completeness.
Taking advantage of the sequential definition of continuity, we use
completeness in the proofs by claiming that a bounded sequence contains a
convergent subsequence. There is again a covert appeal to the Axiom of
Choice.

Chapters 8 and 9, on differentiation, are conventional in content, except
in stressing the distinction between those properties which do not depend on
completeness, in chapter 8 (the definition of derivative and the product,
quotient and chain rules), and those which do, in chapter 9 (Rolle’s Theorem
to Taylor’s Theorem). The differentiation of inverse functions appears out of
place, in chapter 8. Chapter 10, on integration, starts with the computation of
areas in ways which were, or could have been, used before Newton, and
proceeds from these examples to the effective use of step functions in the
theory of the Riemann integral. Completeness is used in the definition of
upper and lower integrals.

The convention of defining logarithmic, exponential and circular
functions either by neatly chosen integrals or by power series is almost
universal. This seems to me to be an excellent procedure in a second course.
But the origins of exponentials and logarithms lie in the use of indices and
that is the starting point of our development in chapter 11. Likewise our
development of circular functions starts by investigating the length of arc of a
circle. The treatment is necessarily more lengthy than is usual, but offers
some powerful applications of the theorems of chapters 1 to 10.

A chapter on uniform convergence completes the book. Some courses,
with good reason, postpone such material to the second year. This chapter
rounds off the problem sequence in two senses: firstly, by the discussion of
term-by-term integration and differentiation, it completes a university-style
treatment of sixth-form calculus; and secondly by discussing the convergence
of functions it is possible to see the kind of questions which provoked the
rigorous analysis of the late nineteenth century.

The interdependence of chapters is illustrated below.

(1—-)2 —>3—>4—>5

1o

6—7

Lol

§—>9—->10 — 11

!

12
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Preface to the first edition Xix

One review of my Pathway into Number Theory (Times Higher
Educational Supplement, 3.12.82) suggested that a pathway to analysis would
be of more value than a pathway to number theory. While not disagreeing
with the reviewer, I could not, and still today cannot, see the two tasks as
comparable. The subtlety of the concepts and definitions of undergraduate
analysis is of a different order. But the reviewer’s challenge has remained
with me, and the success I have seen students achieve with my pathways to
number theory and geometrical groups has spurred me on. None the less, I
offer these steps (notice the cautious claim by comparison with the earlier
books) aware that they contain more reversals of what I regard as an optimal
teaching sequence than the earlier pathways.

It may be helpful to clarify the differences between the present text and
other books on analysis which have the word ‘Problem’ in their titles. I refer
firstly to the books of the Schaum series. Although their titles read Theory
and problems of . . . the books consist for the most part of solutions. Secondly,
a book with the title Introductory Problem Course in Analysis and Topology
written by E. E. Moise consists of a list of theorems cited in logical sequence.
Thirdly, the book Problems and Propositions in Analysis by G. Klambauer
provides an enriching supplement to any analysis course, and, in my opinion,
no lecturer in the subject should be without a copy. And finally there is the
doyen of all problem books, that by Pélya and Szegt (1976), which expects
greater maturity than the present text but, again, is a book no analysis lecturer
should be without.

Sometimes authors of mathematics books claim that their publications
are ‘self-contained’. This is a coded claim which may be helpful to an
experienced lecturer, but can be misleading to an undergraduate. It is never
true that a book of university mathematics can be understood without
experience of other mathematics. And when the concepts to be studied are
counter-intuitive, or the proofs tricky, it is not just that one presentation is
better than another, but that all presentations are problematic, and that
whichever presentation a student meets second is more likely to be understood
than the one met first. For these reasons I persistently encourage the
consultation of other treatments. While it is highly desirable to recommend a
priority course book (lest the student be entirely at the mercy of the lecturer)
the lecturer needs to use the ideas of others to stimulate and improve his/her
own teaching; and, because students are different from one another, no one
lecturer or book is likely to supply quite what the student needs.

There is a distinction of nomenclature of books on this subject, with
North American books tending to include the word ‘calculus’ in their titles
and British books the word ‘analysis’. In the nineteenth century the
outstanding series of books by A. L. Cauchy clarified the distinction. His first
volume was about convergence and continuity and entitled ‘Course of
Analysis’ and his later volumes were on the differential and integral calculus.
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XX Preface to the first edition

The general study of convergence thus preceded its application in the context
of differentiation (where limits are not reached) and in integration (where the
limiting process occurs by the refinement of subdivisions of an interval).
British university students have met a tool-kit approach to calculus at school
and the change in name probably assists the change in attitude required in
transferring from school to university. But the change of name is unhelpful to
the extent that it is part of the purpose of every first course of analysis in
British universities to clarify the concepts of school calculus and to put
familiar results involving differentiation and integration on a more rigorous
foundation.

I must express gratitude and indebtedness to many colleagues: to my own
teacher Dr J. C. Burkill for his pursuit of simplicity and clarity of exposition;
to Hilary Shuard my colleague at Homerton College whose capacity to put
her finger on a difficulty and keep it there would put a terrier to shame (an
unpublished text on analysis which she wrote holds an honoured place in my
filing cabinet; time and again, when I have found all the standard texts
unhelpful, Hilary has identified the dark place, and shown how to sweep away
the cobwebs); to Alan Beardon for discussions about the subject over many
years; to Dr D. J. H. Garling for redeeming my mistakes, and for invaluable
advice on substantial points; to Dr T. W. Korner for clarifying the relationship
between differentiability and invertibility of functions for me by constructing
a differentiable bijection ) — Q whose inverse is not continuous; and to
Dr F. Smithies for help with many historical points. At a fairly late stage in
the book’s production I received a mass of detailed and pertinent advice from
Dr Tony Gardiner of Birmingham University which has led to many
improvements. This book would not yet be finished but for the sustained
encouragement and support of Cambridge University Press. The first book
which made me believe that a humane approach to analysis might be possible
was The Calculus, a Genetic Approach by O. Toeplitz. The historical key to
the subject which he picked up can open more doors than we have yet seen. |
still look forward to the publication of an undergraduate analysis book,
structured by the historical development of the subject during the nineteenth
century. [Added in 1995.] David Bressoud’s new book is greatly to be
welcomed, but we still await a text inspired by the history surrounding the
insights of Weierstrass, and especially the development of the notion of

completeness.

I would like to be told of any mistakes which students or lecturers find in
the book.
School of Education, R. P. Burn

Exeter University, EX1 2LU
January 1991
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Preface to the second edition

Under the inspiration of David Fowler, driven by the leadership of David
Epstein, eased by the teaching ideas of Alyson Stibbard and challenged by the
research of Lara Alcock, a remarkable transformation of the way in which
students begin to study analysis took place at Warwick University. The
division of teaching time between lectures and problem-solving by students in
class changed to give student problem-solving pride of place. Many of the
problems the students tackled in this approach to analysis were taken from the
first five chapters of the first edition of this book. The experience has
suggested a number of improvements to the original text. This new edition is
intended to embody these improvements. The most obvious is the playing
down of the Peano postulates for the natural numbers and algebraic axioms
for the real numbers, which affects chapter 1 and the beginning of chapter 2.
The second is in the display of ‘summaries’, which now appear when a major
idea has been rounded off, not just at the end of the chapter. The third is an
increase in the number of diagrams, and the fourth is the introduction of
simple (and I hope evocative) names for small theorems, so that they may be
cited more readily than when they only have a numerical reference. There are
also numerous smaller points not just about individual questions. In
particular, there is a suggestion of two column proofs in establishing the
rudimentary properties of inequalities in chapter 2, and least upper bounds
now figure more substantially in chapter 4. The stimulus of discussions with
David Epstein both about overall strategy and about the details of question
after question has been a rare and enriching experience.

I must also thank Paddy Paddam, previously of Cambridge, who has
worked through every question in the text, and made invaluable comments to
me from a student’s eye view. I have also taken the opportunity to correct and
improve the historical references and notes.

Kristiansand
March 2000

XX1
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Preface to the third edition

In addition to taking the opportunity to correct and improve details in the text
and historical notes, this edition incorporates two new ideas. In chapter 3, the
introduction to limits, especially in relation to null sequences, builds on the
method of Archimedes for finding areas and volumes, and the early questions
in chapter 10 investigate the determination of areas bounded by continuous
monotonic curves without an appeal to completeness. This extends the
structure of the book from limits, continuity and differentiation with and
without completeness to consider integration also, with and without
completeness. As in so many places in previous editions, the clarifying
insights have emerged from seeking to understand the historical development.
All the changes have been made in such a way as to maintain, so far as
possible, the sequence and numbering of questions in the second edition.
Only questions 3.24-26, 28 and 10.1, 3-9 have been substantially changed.

I gratefully acknowledge discussion of historical matters with Jeremy
Gray, and also prolonged dialogue with Dirk Nelson which has improved the
clarity and accuracy of the text.

Exeter
May 2014

xXxiii
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Glossary

gn 27 refers to question 27 of the same chapter.

gn 6.27 refers to question 27 of chapter 6.

6.277" refers to what immediately follows qn 6.27.
6.27~ refers to what immediately precedes qn 6.27.

xeA x is an element of the set A;
for example, x € {x, ...}
x¢gA x is not an element of the set A

{x| x € A} the set A

or {x:x € A}

ACB A is a subset of B
every member of A is a member of B
xeA=xeB

AUB the union of A and B
{x| x € Aor x € B}
ANB the intersection of A and B
{x| x € Aand x € B}
A\B {x| x € Aand x ¢ B}
A X B the cartesian product

{(a,b)la € A,b € B}
f:A— B the function f, a subset of A x B,
{(a, f(@)la €A, f(a) € B}
A is the domain and B is the co-domain of the
function f
F(A) {f@)|xeA)CB
x = f(x) the function f,
x is an element of the domain of f
N the set of natural numbers
or counting numbers
{1,2,3,...}

XX1V
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Glossary XXV
VA the set of integers
{0, £1,+£2,...}
7+ the set of positive integers
{1,2,3,...}
Q the set of rational numbers
{r/q| p € Z,q € Z\{0}}
Qt the set of positive rationals
{x|x € Q,0 < x}
R the set of real numbers, or
infinite decimals
RT the set of positive real numbers
{x|] x eR,0 < x}
Lx] the integral part of x,
also called floor x
x]<x<[x]+1
[a, b] closed interval
{x|la<x<b,x,a,beR}
(a, b) open interval
{x|]a <x <b,x,a,b e R},
the symbol may also denote the ordered pair, (a, b),
or the two coordinates of a point in R?
[a, b) half-open interval
{x|]a<x <b,x,a,beR}
[a, 00) closed half-ray
{x|a<x,a,x e R}
(a, o0) open half-ray
{x|a <x,a,x e R}
(an) the sequence {a,| n € N, a, € R}
that is, a function: N — R
(ap) — a Forany ¢ > 0, |[a, —a| < ¢
asn — oo foralln > N
(n) o whenn € Z+
r (n—nr)r!
a ala—Da—-2)...a—r+1)
()
the binomial coefficient when a € R
n=N
Zan a1 +a +az+...+an
n=1
Inx the natural logarithm of x

log, x
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