Index

Accuracy, 48–61, 187, 372
Acoustic intensity level, 807
Additive Schwarz procedure, 654–9
Adiabatic wall, 206
Advancing front methods (AFM), 601–6
Atkin’s algorithm, 580
Albedo, 876, 892
Algebraic grid generator, 543–61, 579
Algebraic Reynolds stress model, 702–3
Alternating direction implicit (ADI), 66, 72–3, 141, 173, 522
Amplification factor, 70, 78
Approximate factorization, 73–5, 141, 175
Arbitrary Lagrangian-Eulerian methods, 912, 914, 930
Arc-length method, 571
Arnoldi process, 385
Arrhenius law, 737
Artificial compressibility, 106, 107, 126
Artificial viscosity (diffusion), 123–125, 127, 139, 140, 368, 371
Artificial viscosity flux limiters, 195
Assembly of stiffness (diffusion, viscosity) matrix, 212–5
Assembly of source vector, 212–5
Axisymmetric cylindrical heat conduction, 335–6
Back scatter, 707
Backward (upwind) differencing, 7, 46
Baldwin-Lomax model, 702–3
Banach space, 256
Base functions, see interpolation functions
Beam-Warming method, 85–6, 141, 156, 169–76, 524
Bernstein polynomials, 581, 583
Beta spline, 582, 583
Bezier curve, 581–586
Bezier patches, 583
BGK model, 940, 941
Biharmonic equation, 415
Black hole accretion, 975–76
Boltzmann equation, 940–941
Boolean matrix, 246, 313
Boolean operators, 609
Dirichlet, 17–20, 38–41
for Euler and Navier-Stokes system of equations, 197–207
mixed, Robin, 38–41
well-posedness, 98, 201
Boundary element methods, 245, 532–535
Bowyer algorithm, 597–600
Box (tophat) function, 707
Burger’s Equation, 87–90, 355, 402–404, 502
C0, C1, Cm continuity, 307–308
Cathull-Rom form, 582, 584
Cauchy/Robin boundary conditions, 39, 317
Cebeci-Smith model, 694
Cell area (Jacobian) method, 570
Cell-centered average scheme, 225–7
Cell-centered control volume, 223–5
Central difference, 6, 141, 371
CFL (Courant) number, 77, 78, 368
Characteristic Galerkin method (CGM), 347, 445–6
Characteristic variables, 134–5, 205
Chebyshev polynomials, 473–5, 645, 776, 788, 931
Chemical equilibrium equations, 714–54
Completeness, 307
Compatibility relations, 132
Compressibility condition, 354
Compressibility effects, 703–5
Compression corner flow, 464
Condition number, 256, 257
Conduction-radiation ratio, 876, 906
Conforming elements, 308
Conjugate gradient method (CGM), 337, 384
Consistency, 61

Cambridge University Press
978-1-107-42525-5 - Computational Fluid Dynamics: Second Edition
T. J. Chung
Index
More information
Consistent mass matrix, 359

Continuous space-time (CST), 327

Control functions, 567, 579, 618–627

Control function, 617–27

Control surfaces (volumes), 12–19, 219–32, 234–5, 501–9

Convection-diffusion equation, 369

Convection-dominated flow, 347–8

Convection Jacobians, 131, 170, 181, 989–94

Convection matrix, 355, 370

Convergence, 62, 258, 259, 306–8

Convex hull, 599

Coordinate transformation, 94–8

Cost function, 891

Coupled Eulerian-Lagrangian methods, 246, 535–8, 790

Courant (CFL) number, 368, 372, 374

Covariant metric tensor, 563

Crank-Nicolson scheme, 71–5, 81, 108, 356, 362, 446–7

Cubic spline, 535–7

Curl of three-dimensional vorticity transport equations, 118, 417

Curvature tensor, 574

Damkohler number, 452, 743, 744, 784

Deflection angle, 467

Delaunay-Voronoi methods (DVM), 591–600

Courant (CFL) number, 368, 372, 374

Covariant metric tensor, 563

Crank-Nicolson scheme, 71–5, 81, 108, 356, 362, 364

Cubic spline, 535–7

Curvature tensor, 574

Domain vertex methods, 547–45

Double asymptotic approximation, 373

Driven cavity flow, 465–7

DuFort-Frankel methods, 71, 522

Dulquist and Bjorck scheme, 56

Dust infall, 980–3

Eckert number, 881

Eddy (turbulent) viscosity, 710

Effectivity index, 646

Eigenvalues, 132, 143, 179, 204, 208

positive, 204, 207

negative, 204, 207

Eigenvectors, 133, 134

Element-by-element (EBE) method, 340, 381

Elliptic equations, 31–3, 63–7, 98, 561, 572

Elliptic grid generator, 561–8, 618

Emissive power, 851–2

Energy dissipation range, 708

Energy norm error, 255, 630

Ensemble average, 691

Entropy condition, 151

Entropy controlled instability, 839–44

Entropy mode acoustics, 813–8

Entropy variables, 437, 441–4

Entropy variable Jacobians, 437, 438–40

Gauss elimination, 67

Gauss-Seidel iteration, 65

generalized minimal residual (GMRES) method, 380, 752

Jacobi iteration, 65

Newton-Raphson method, 380, 752

Runge-Kutta method, 90, 168

Thomas algorithm, 76

triangular matrix algorithm (TDMA), 76

Error estimates, 254–9, 645

Error coefficient vector, 385

Error indicator, 628–30, 645

Errors

iterative, 65

round-off, 65

sources of, 91–94

truncation, 46–62

Essentially nonoscillatory (ENO) schemes, 163–5

Euler equations, 129–166, 367–91

Eulerian differences, 535

Explicit scheme, 68–71, 77–81, 167, 365, 366

Extrapolation methods, 201

FDV parameters (variation parameters), 181–185, 448–59, 784

Flow functions, 812, 836

Filtering functions, 706

Fine grain parallelism, 666

Finite difference operators, 48–61

derivative, 48

displacement, 48
Finite element functions
trial functions, (base, interpolation, shape), 8, 262, 308
temporal test functions, 254, 327
test functions, 8, 377–9
Finite point methods, 491–2
Finite rate chemistry, 744, 777
First order variation parameters, 183, 187
Flowfield-dependent variation methods, 180–94, 448–67, 781, 828, 832, 977–84
Fluid-particle mixture, 923–7
Flux corrected transport (FCT) schemes, 165–6
Flux extrapolation approximation, 149
Flux implicit higher order accurate schemes, 196
Flux vector splitting, 142–5, 448
Forward differencing, 7, 46
Fourier series, 69
Fourier-cutoff function, 707
Fractional step methods, 75, 522
Frequency, fundamental, 69
Front tracking methods, 912
Froude number, 978
Frozen chemistry, 744
FTCS schemes, 78, 81
FTFS schemes, 77
Fully implicitly continuous Eulerian (FICE) methods, 956
Fundamental frequency, 69
FVM via FDM, 16, 216–39
FVM via FEM, 17, 491–517
Galerkin methods, 9, 243–54
characteristic (CGM), 426, 443–6
discontinuous (DDGM), 243, 426, 446–8
generalized (GGM), 243, 347, 426, 435
generalized Petrov (GPG), 243, 374, 376–80, 426, 436–43
standard (SGM), 11, 243, 249, 309–24, 347, 912, 910
streamline diffusion Petrov (SUPG), 347, 374
Taylor (TGM), 243, 347, 426, 430–4, 777, 840
Galerkin test function, 370, 377
Gather operation, 669–70
Gauss elimination, 67, 657
Gauss-Seidel iteration, 65
Gaussian curvature, 576
Gaussian quadrature, 231, 292, 293 484, 892, 909, 995–1002
Generalized Galerkin methods (GGM), 327–336, 430, 435
Generalized minimal residual (GMRES), 384–5, 752
Galerkin-Taylor-Galerkin methods, 243, 426, 430–4, 510, 530
Generalized Petrov-Galerkin methods, 374, 377, 378, 410, 531
Gibbs function, 752
Givens Householder rotation matrix, 386, 390
Godunov method, 145–8, 155
Gram-Schmidt orthogonalization, 385
Granularity in parallel processing, 673
Gravitation, 965
Gravitational source term Jacobian, 1009–1016
Green’s function, 532
Grid clustering, 553–545
Grid generation
structured, 591–615
unstructured, 543–587
Hanging nodes, 630–631, 637–638
Heat conduction, 98, 99, 335
Helmholtz equation, 533, 808
Hermite polynomial, 271, 581
Hermite polynomial elements, 271–3, 544
Hessenberg matrix, 385, 387, 395
Hexahedral element, 303–5, 608
Hilbert space, 255, 629
hp methods, 645–9
hr methods, 640–3
Hyperbolic equations, 31–3, 77–81, 93, 332–4, 522
Hyperbolic grid generator, 565–71
Hypersonic flows, 120, 467 769–75
Ill-conditioned, 257
Implicit scheme, 71–72, 81, 90, 169, 331, 356, 365, 366
Incompressibility condition, 106–15
Incompressible limit, 178, 439
Inertial subrange, 708
Inner product, 8, 218, 249, 369
Insertion polygon, 594
Interpolation functions, 8, 247, 262, 308, 472, 543
Intrinsic time scale, 440
Ionization, 767, 772
Isoparametric element, 286–297, 477–80, 909
Iterative error, 65
Iterative paving method, 613
Jacobi iteration, 65
Jacobi preconditioner, 382
Jacobian
convection flux, 131, 170, 989
diffusion flux, 989
diffusion gradient, 181, 425, 979–84
source term, 1003, 1014
K = ε model, 696–7, 781, 785, 932
K = w model, 698
Kerr black hole geometry, 669
Kirchhoff’s law, 853
Kirchhoff’s method, 809–10, 821, 823
Kolmogorov microscale, 455, 708
Krylov space, 385
Laasonen method, 71, 522
Lagrangian multipliers, 318, 320, 753, 754
Lagrangian polynomial elements, 269–71, 543–4, 580
Lagrangian differences, 537
Lanczos algorithm, 382, 383, 385
Landau-Teller model, 773
Laplace equations, 63, 561–3
Large eddy simulation, 706–133, 792, 794
Law of mass action, 736–7
Lax-Friedrichs scheme, 138
Lax method, 80, 83, 151

© in this web service Cambridge University Press
www.cambridge.org
INDEX

Lax-Wendroff method, 80, 82, 83, 105, 138, 523, 525
LBB Condition, 325, 408
Leapfrog method, 80, 168, 363
Midpoint, 87
Least square methods, 488–490, 890–2
Legendre polynomials, 466–7, 645
Legendre spectral mode functions, 479, 470, 645
Leonard stress, 707
Level set methods, 912
Lighthill’s acoustic energy, 811
Load balancing, 674–5
Dynamic, 675
Static, 674, 675
Local and global approaches for FEM, 309, 310, 311
Local remeshing, 642
L2 norm error, 256, 385, 464
Lumped mass matrix, 359–60
MacCormack scheme, 82, 85, 89, 105, 140, 168, 525, 820
Mach number, 29, 120, 455, 838, 845
Mach wave, 20, 30
Magnetohydrodynamics, 937–9
Marker and cell (MAC), 106, 115, 409
Mass (Favre) average, 691–2
Mass fraction, 736
Mass matrix
Consistent, 359
Lumped, 359–360
Matrix-by-vector product, 669
Matrix norm, 256
Maxwell equations, 932–9
Mesh enrichment (p) methods, 639–40
Mesh movement (r) methods, 639–40
Mesh refinement (h) methods, 628–39
Mesh parameter, 258
Mesh smoothing, 604, 605
Meshless methods, see finite point methods
MIMD, SIMD, 666–8
Minimizer error vector, 385
Minkowski coordinate transformation, 972–3
Mixed methods, 325, 326, 407
Mixed/Robin boundary conditions, 38–41
Molar concentration, 736
Mole fraction, 736
Monotonicity condition, 152
Monte Carlo methods, 538–9
Minkowski coordinate transformation, 972–3
Multiblock structured grids, 587–9
Multigrid methods, 661–666
restriction process, 661–5
prolongation process, 661–5
Multiplicative Schwarz procedure, 654–60
Multi-step method, 81
Multitasking, 673
Multithreading, 672, 673, 678–83
MUSCL approach, 148–50
Natural coordinates, 267, 278, 282
Navier-Stokes system of equations, 33–8, 166–214, 426–460
Neumann boundary conditions, 9, 13–18, 20–24, 38–41, 97, 310, 312, 317–20, 508
Newton-Raphson method, 380, 382, 751, 752, 799, 891, 896
Nonreflecting boundary conditions, 204–5
Node-centered control volume, 219–23
Noise control, 827–32
Normed adjusted error, 385
Normed error vector, 385
Number density, 736
Numerical diffusion, 357, 358
Numerical diffusion test function, 367–80
Numerical diffusion factor, 368–73
Numerical diffusion matrix, 358, 370
Numerical diffusion test functions, 368–9, 370, 379, 441
Numerical viscosity, 153, 371
Nusselt number, 904
Operator splitting, 411, 777
Operator splitting methods, 411, 412
Optical thickness, 865, 909
Optically thick, 871–85
Optically thin, 869–83
Optimal control methods, 490, 889, 890–2, 904
Optimality condition, 647, 847
Orr-Sommerfeld equation, 419, 421
Orthogonality, 8, 249, 623
Outscatter, 707
Over-relaxation method, 66, 99, 128
Pade’ scheme, 60
Parabolic equations, 31–3, 67–73, 327–32
Parabolic grid generator, 572
Parallel processing, 666–75
Partial pressure, 736
Particle-in-cell (PIC), 119, 228, 538
PDE mapping methods, 561–572
Peclet number, 183, 370, 453, 743, 881
Penalty methods, 326, 408
Petrov-Galerkin (integral) methods, 368, 370, 374
Petrov-Galerkin test function, 377
Phase angle, 70
Phase field formulation, 912
Phase interaction methods, 922, 932
PISO, 106, 112–14, 175–7, 509, 528
Planck’s law, 851
Planck’s law, 851
Plasma processing, 946–56
Point implicit method, 197, 777
Pointwise error, 256
Poisson equations, 115, 572, 655
Potential equation, 121–9
Prandtl mixing length model, 693
Prandtl number, 909
Preconditioned conjugate gradient, 382
Preconditioning, 178–9, 396, 438, 657
Predictor-corrector, 81–3, 140, 168
Pressure-correction method, 108, 409, 410
Pressure mode acoustics, 808–810
Pressure-strain correlation tensor, 701
Primitive variables, 132, 442–6
Primitive variable Jacobian, 438, 439
Principal curvature, 578
<table>
<thead>
<tr>
<th>INDEX</th>
<th>1033</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prism element, 302, 303</td>
<td></td>
</tr>
<tr>
<td>Probability density function, 758–61, 785, 793</td>
<td></td>
</tr>
<tr>
<td>Projection method, 249</td>
<td></td>
</tr>
<tr>
<td>Prolongation process, 661–5</td>
<td></td>
</tr>
<tr>
<td>Pure convection, 399–402</td>
<td></td>
</tr>
<tr>
<td>QR algorithm, 421</td>
<td></td>
</tr>
<tr>
<td>Quadrilateral elements, 286–297</td>
<td></td>
</tr>
<tr>
<td>Quadtree and octree methods, 614</td>
<td></td>
</tr>
<tr>
<td>Radiative transfer equation, 873</td>
<td></td>
</tr>
<tr>
<td>Ramjet combuster, 779</td>
<td></td>
</tr>
<tr>
<td>Rarefied gas dynamics, 941–946</td>
<td></td>
</tr>
<tr>
<td>Reflection wave (reflection boundary), 205</td>
<td></td>
</tr>
<tr>
<td>Restriction process, 661–665</td>
<td></td>
</tr>
<tr>
<td>Reconstruction function, 163</td>
<td></td>
</tr>
<tr>
<td>Relativistic hydrodynamics, 976–7</td>
<td></td>
</tr>
<tr>
<td>Relativistic shock tube, 974–5</td>
<td></td>
</tr>
<tr>
<td>Relativity</td>
<td></td>
</tr>
<tr>
<td>general, 965–72</td>
<td></td>
</tr>
<tr>
<td>special, 965</td>
<td></td>
</tr>
<tr>
<td>Reynolds number, 107, 184, 370, 428, 488, 909, 931</td>
<td></td>
</tr>
<tr>
<td>Reynolds average Navier-Stokes (RANS), 704, 706, 928</td>
<td></td>
</tr>
<tr>
<td>Reynolds stress, 455, 707</td>
<td></td>
</tr>
<tr>
<td>Reynolds stress model, 700–702, 780</td>
<td></td>
</tr>
<tr>
<td>Richardson method, 71</td>
<td></td>
</tr>
<tr>
<td>Riemann-Christoffel tensor, 576</td>
<td></td>
</tr>
<tr>
<td>Riemann invariants, 135</td>
<td></td>
</tr>
<tr>
<td>Roe’s approximate Riemann solver, 146</td>
<td></td>
</tr>
<tr>
<td>Root mean square error, 256</td>
<td></td>
</tr>
<tr>
<td>Rossland approximation, 871</td>
<td></td>
</tr>
<tr>
<td>Rotational difference, 125</td>
<td></td>
</tr>
<tr>
<td>Round-off errors, 65</td>
<td></td>
</tr>
<tr>
<td>Runge-Kutta method, 90, 168, 776, 792</td>
<td></td>
</tr>
<tr>
<td>Scatter operation, 669–70</td>
<td></td>
</tr>
<tr>
<td>Scattering media, 890</td>
<td></td>
</tr>
<tr>
<td>Schur complement matrix, 656</td>
<td></td>
</tr>
<tr>
<td>Schwarzschild metric, 969</td>
<td></td>
</tr>
<tr>
<td>Scramjet combustion, 731–735</td>
<td></td>
</tr>
<tr>
<td>Second order variation parameters, 183, 187</td>
<td></td>
</tr>
<tr>
<td>Semiconductor plasma processing, 946–56</td>
<td></td>
</tr>
<tr>
<td>Semi-implicit pressure correction, 413, 413</td>
<td></td>
</tr>
<tr>
<td>Sensible enthalpy, 734, 740, 741</td>
<td></td>
</tr>
<tr>
<td>Shock angle, 467</td>
<td></td>
</tr>
<tr>
<td>Shape functions, see interpolation functions</td>
<td></td>
</tr>
<tr>
<td>Shear layer, 206</td>
<td></td>
</tr>
<tr>
<td>Shock-capturing mechanism, 189–90</td>
<td></td>
</tr>
<tr>
<td>Shock tube problems, 465, 974, 975</td>
<td></td>
</tr>
<tr>
<td>Shock wave, 120, 205</td>
<td></td>
</tr>
<tr>
<td>Shock wave boundary layer flow, 463–6</td>
<td></td>
</tr>
<tr>
<td>SIMPLE, SIMPLER, SIMLEC, 106, 111, 118, 528</td>
<td></td>
</tr>
<tr>
<td>Singularity, 648</td>
<td></td>
</tr>
<tr>
<td>Slivers, 594</td>
<td></td>
</tr>
<tr>
<td>Small perturbation approximations, 33, 121</td>
<td></td>
</tr>
<tr>
<td>Sobolev space, 255</td>
<td></td>
</tr>
<tr>
<td>Sound wave, 29</td>
<td></td>
</tr>
<tr>
<td>Smooth particle hydrodynamics (SPH), 491, 492, 913</td>
<td></td>
</tr>
<tr>
<td>Smoothness, 623</td>
<td></td>
</tr>
<tr>
<td>Solar corona mass ejection, 956–7</td>
<td></td>
</tr>
<tr>
<td>Solid angle, 853</td>
<td></td>
</tr>
<tr>
<td>Sound pressure level, 807</td>
<td></td>
</tr>
<tr>
<td>Space-time</td>
<td></td>
</tr>
<tr>
<td>continuous, 327</td>
<td></td>
</tr>
<tr>
<td>discontinuous, 327–5</td>
<td></td>
</tr>
<tr>
<td>Space-time Galerkin/least squares, 378</td>
<td></td>
</tr>
<tr>
<td>Spatial average, 691</td>
<td></td>
</tr>
<tr>
<td>Spectral element methods, 472–87, 788</td>
<td></td>
</tr>
<tr>
<td>Spectral methods, 472</td>
<td></td>
</tr>
<tr>
<td>Speedup factor, 666</td>
<td></td>
</tr>
<tr>
<td>Speed of light, 965</td>
<td></td>
</tr>
<tr>
<td>Speed of sound, 29</td>
<td></td>
</tr>
<tr>
<td>Splitting methods, 81</td>
<td></td>
</tr>
<tr>
<td>Spray combustion, 746–8, 786, 791</td>
<td></td>
</tr>
<tr>
<td>Stability and accuracy, 369–375</td>
<td></td>
</tr>
<tr>
<td>Stability conditions</td>
<td></td>
</tr>
<tr>
<td>Numerical, 61, 70, 233, 234, 369–75</td>
<td></td>
</tr>
<tr>
<td>Physical, 421, 839–47</td>
<td></td>
</tr>
<tr>
<td>Stephan-Boltzmann law, 842</td>
<td></td>
</tr>
<tr>
<td>Spray combustion, 746–8, 786–91</td>
<td></td>
</tr>
<tr>
<td>Stiffness (diffusion or viscosity) matrix, 9, 251, 277, 309–17</td>
<td></td>
</tr>
<tr>
<td>Stoichiometric condition, 736</td>
<td></td>
</tr>
<tr>
<td>Stokes’s flow, 324–7</td>
<td></td>
</tr>
<tr>
<td>Stream function, 39, 115</td>
<td></td>
</tr>
<tr>
<td>Streamline diffusion in GLS, 439</td>
<td></td>
</tr>
<tr>
<td>Streamline diffusion in GPG, 439</td>
<td></td>
</tr>
<tr>
<td>Streamline diffusion method (SDM), 243, 367</td>
<td></td>
</tr>
<tr>
<td>Streamline upwind Petrov-Galerkin (SUPG), 347, 374</td>
<td></td>
</tr>
<tr>
<td>Subgrid scale model, 709</td>
<td></td>
</tr>
<tr>
<td>Subgrid stress tensor, 707</td>
<td></td>
</tr>
<tr>
<td>Subsonic flow, 39, 120, 123</td>
<td></td>
</tr>
<tr>
<td>Supersonic flow, 30, 120, 128</td>
<td></td>
</tr>
<tr>
<td>Surface grid generator, 572–9, 584–7</td>
<td></td>
</tr>
<tr>
<td>Surface tension, 352, 1014–21</td>
<td></td>
</tr>
<tr>
<td>Surface tension force Jacobian, 1003–8</td>
<td></td>
</tr>
<tr>
<td>Surface traction, 353</td>
<td></td>
</tr>
<tr>
<td>Sutherland’s law, 34, 429</td>
<td></td>
</tr>
<tr>
<td>Taylor-Galerkin methods (TGM), 355, 366, 777, 840</td>
<td></td>
</tr>
<tr>
<td>Taylor series, 83, 85, 86, 180, 356, 368, 430, 449</td>
<td></td>
</tr>
<tr>
<td>Temporal parameter, 329</td>
<td></td>
</tr>
<tr>
<td>Temporal test functions, 254–327</td>
<td></td>
</tr>
<tr>
<td>Tensor notation (index notation), 246</td>
<td></td>
</tr>
<tr>
<td>Test function</td>
<td></td>
</tr>
<tr>
<td>spatial, 8, 247, 262, 308</td>
<td></td>
</tr>
<tr>
<td>temporal, 328, 435, 472</td>
<td></td>
</tr>
<tr>
<td>Tetrahedral elements, 298</td>
<td></td>
</tr>
<tr>
<td>Thomas algorithm, 76</td>
<td></td>
</tr>
<tr>
<td>Threaded parallel program, 678–83</td>
<td></td>
</tr>
<tr>
<td>Three plus one formulation, 967–8</td>
<td></td>
</tr>
<tr>
<td>Time average, 690–1</td>
<td></td>
</tr>
<tr>
<td>Total variation diminishing (TVD) schemes, 150–62, 189, 526, 527</td>
<td></td>
</tr>
<tr>
<td>Transfinite interpolation (TFI) methods, 555–60</td>
<td></td>
</tr>
<tr>
<td>Transient problems, 327</td>
<td></td>
</tr>
<tr>
<td>Transonic flow, 120, 123</td>
<td></td>
</tr>
<tr>
<td>Trial function, 8, 247, 262, 308, 470</td>
<td></td>
</tr>
<tr>
<td>Triangular elements, 273, 286</td>
<td></td>
</tr>
<tr>
<td>Triangular prism elements, 302, 303</td>
<td></td>
</tr>
<tr>
<td>Tridiagonal matrix algorithm (TDMA), 76</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Truncation errors, 46–62
Two-phase flows, 352, 912–934
Two-step explicit scheme, 358, 359
Two-temperature model, 772, 801

Unstable waves, 839–45, 846, 847
Upwind scheme, 124, 526
 First order, 142–50
 Second order, 150–62, 448
Unstructured finite element mesh refinements, 650–2
Unstructured grid generation, 591–615

Variable extrapolation approach, 148
Variational equation, 8, 250, 319
Variational functional, 622
Variational methods, 249, 251, 377, 622–7
Variation parameters (FDV parameters), 181–5, 448–59
Variational principles, 243, 251
Vector pipelines, 666

Vibration model, 772–3, 799
View factors, 858–62
Viscosity (diffusion, stiffness) matrix, 9, 251, 277, 309–17
Volume-of-fluid methods, 912–21
Volume tracking methods, 912
Von Neumann stability analysis, 68–71, 77–80
Vortex methods, 115–118, 414–20
Voronoi polygons, 592–4
Vorticity mode acoustics, 811–3
Vorticity transport equation, 117

Wall functions, 698–9
Watson algorithm, 592–7
Wave equation, 87
Wave number, 9, 51, 253
Weak form (solution), 9, 369
Weight function, 621
Weighted residual methods, 249, 252, 472–99
Well-conditioned, 257, 438, 439
Well-posedness, 198, 201