
Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Programming
in Ada 2012

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Programming
in Ada 2012

JOHN BARNES

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107424814

© John Barnes 2014

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2014

Typeset By John Barnes Informatics

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

ISBN 978-1-107-42481-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Reprinted with corrections and additions 2021

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

To Barbara

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

vii

Foreword xv

Preface xix

Part 1 An Overview 1

1 Introduction 3

1.1 Standard development 3
1.2 Software engineering 4
1.3 Evolution and abstraction 6
1.4 Structure and objectives of this book 8
1.5 References 10

2 Simple Concepts 11

2.1 Key goals 11
2.2 Overall structure 12
2.3 The scalar type model 17
2.4 Arrays and records 19
2.5 Access types 22
2.6 Errors and exceptions 23
2.7 Terminology 26

3 Abstraction 27

3.1 Packages and private types 27
3.2 Objects and inheritance 30
3.3 Classes and polymorphism 34
3.4 Genericity 40
3.5 Object oriented terminology 41
3.6 Tasking 43

4 Programs and Libraries 47

4.1 The hierarchical library 47
4.2 Input–output 49

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

4.3 Numeric library 52
4.4 Running a program 54

Program 1 Magic Moments 59

Part 2 Algorithmic Aspects 63

5 Lexical Style 65

5.1 Syntax notation 65
5.2 Lexical elements 66
5.3 Identifiers 67
5.4 Numbers 68
5.5 Comments 71
5.6 Pragmas and aspects 71

6 Scalar Types 73

6.1 Object declarations and assignments 73
6.2 Blocks and scopes 75
6.3 Types 77
6.4 Subtypes 79
6.5 Simple numeric types 81
6.6 Enumeration types 87
6.7 The type Boolean 90
6.8 Categories of types 93
6.9 Expression summary 95

7 Control Structures 101

7.1 If statements 101
7.2 Case statements 105
7.3 Loop statements 108
7.4 Goto statements and labels 114
7.5 Statement classification 111

8 Arrays and Records 117

8.1 Arrays 117
8.2 Array types 122
8.3 Array aggregates 127
8.4 Characters and strings 132
8.5 Arrays of arrays and slices 135
8.6 One-dimensional array operations 138
8.7 Records 143

9 Expression structures 149

9.1 Membership tests 149
9.2 If expressions 151
9.3 Case expressions 155

viii Contents

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

9.4 Quantified expressions 157

10 Subprograms 161

10.1 Functions 161

10.2 Operators 169

10.3 Procedures 171

10.4 Aliasing 177

10.5 Named and default parameters 179

10.6 Overloading 181

10.7 Declarations, scopes, and visibility 182

11 Access Types 189

11.1 Flexibility versus integrity 189

11.2 Access types and allocators 191

11.3 Null exclusion and constraints 198

11.4 Aliased objects 200

11.5 Accessibility 204

11.6 Access parameters 206

11.7 Anonymous access types 210

11.8 Access to subprograms 214

11.9 Storage pools 220

Program 2 Sylvan Sorter 223

Part 3 The Big Picture 227

12 Packages and Private Types 229

12.1 Packages 229

12.2 Private types 234

12.3 Primitive operations and derived types 241

12.4 Equality 247

12.5 Limited types 251

12.6 Resource management 257

13 Overall Structure 263

13.1 Library units 263

13.2 Subunits 266

13.3 Child library units 268

13.4 Private child units 272

13.5 Mutually dependent units 279

13.6 Scope, visibility, and accessibility 283

13.7 Renaming 287

13.8 Programs, partitions, and elaboration 292

Program 3 Rational Reckoner 297

Contents ix

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

14 Object Oriented Programming 301

14.1 Type extension 301
14.2 Polymorphism 307
14.3 Abstract types and interfaces 315
14.4 Primitive operations and tags 318
14.5 Views and redispatching 328
14.6 Private types and extensions 334
14.7 Controlled types 342
14.8 Multiple inheritance 347
14.9 Multiple implementations 353

15 Exceptions 361

15.1 Handling exceptions 361
15.2 Declaring and raising exceptions 364
15.3 Checking and exceptions 370
15.4 Exception occurrences 372
15.5 Exception pragmas and aspects 376
15.6 Scope of exceptions 381

16 Contracts 385

16.1 Aspect specifictions 385
16.2 Preconditions and postconditions 388
16.3 Type invariants 399
16.4 Subtype predicates 405
16.5 Messages 413

17 Numeric Types 417

17.1 Signed integer types 417
17.2 Modular types 423
17.3 Real types 425
17.4 Floating point types 427
17.5 Fixed point types 430
17.6 Decimal types 436

18 Parameterized Types 439

18.1 Discriminated record types 439
18.2 Default discriminants 443
18.3 Variant parts 449
18.4 Discriminants and derived types 453
18.5 Access types and discriminants 456
18.6 Private types and discriminants 463
18.7 Access discriminants 465

19 Generics 469

19.1 Declarations and instantiations 469
19.2 Type parameters 475

x Contents

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

19.3 Subprogram parameters 485
19.4 Package parameters 492
19.5 Generic library units 498

20 Tasking 501

20.1 Parallelism 501
20.2 The rendezvous 503
20.3 Timing and scheduling 508
20.4 Protected objects 513
20.5 Simple select statements 521
20.6 Timed and conditional calls 524
20.7 Concurrent types and activation 527
20.8 Termination, exceptions, and ATC 534
20.9 Signalling and scheduling 540
20.10 Summary of structure 546

21 Object Oriented Techniques 551

21.1 Extension and composition 551
21.2 Using interfaces 554
21.3 Mixin inheritance 560
21.4 Linked structures 562
21.5 Iterators 565
21.6 Generalized iteration 570
21.7 Object factories 577
21.8 Controlling abstraction 581

22 Tasking Techniques 587

22.1 Dynamic tasks 587
22.2 Multiprocessors 590
22.3 Synchronized interfaces 598
22.4 Discriminants 609
22.5 Task termination 614
22.6 Clocks and timers 617
22.7 The Ravenscar profile 626

Program 4 Super Sieve 627

Part 4 Completing the Story 631

23 Predefined Library 633

23.1 The package Standard 633
23.2 The package Ada 637
23.3 Characters and strings 640
23.4 Numerics 659
23.5 Input and output 663
23.6 Text input–output 669

Contents xi

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

23.7 Streams 678

23.8 Environment commands 684

Program 5 Wild Words 695

24 Container Library 699

24.1 Organization of library 699

24.2 Doubly linked lists 701

24.3 Vectors 709

24.4 Maps 713

24.5 Sets 725

24.6 Trees 737

24.7 Holder 747

24.8 Queues 749

24.9 Bounded containers 757

24.10 Indefinite containers 761

24.11 Sorting 767

24.12 Summary table 769

25 Interfacing 781

25.1 Representations 781

25.2 Unchecked programming 785

25.3 The package System 788

25.4 Storage pools and subpools 790

25.5 Other languages 797

Program 6 Playing Pools 803

26 The Specialized Annexes 807

26.1 Systems Programming 807

26.2 Real-Time Systems 809

26.3 Distributed Systems 813

26.4 Information Systems 815

26.5 Numerics 815

26.6 High Integrity Systems 820

27 Finale 823

27.1 Names and expressions 823

27.2 Type equivalence 827

27.3 Overall program structure 830

27.4 Portability 834

27.5 Penultimate thoughts 836

27.6 SPARK 839

xii Contents

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Appendices 851

A1 Reserved Words, etc. 851

A1.1 Reserved words 851
A1.2 Predefined attributes 852
A1.3 Predefined aspects 859
A1.4 Predefined pragmas 862
A1.5 Predefined restrictions 864

A2 Glossary 867

A3 Syntax 873

A3.1 Syntax rules 873
A3.2 Syntax index 891

Answers to Exercises 901

Bibliography 929

Index 931

Contents xiii

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Foreword

xv

Programming Languages and Software practice are always engaged in a game of

leapfrog: a forward looking programming language introduces new ways of

thinking about software development, and its constructs shape the way

programmers think about their craft; creative programmers invent new idioms and

patterns to tackle ever more complex programming tasks, and these idioms become

incorporated in the next generation of programming languages.

The latest version of Ada, whose description we owe once again to the

inimitable expository talents of John Barnes, has exemplified this dynamic

repeatedly over the last 30 years.

• Ada 83 showed programmers how programming in the large should be

organized (packages, strong typing, privacy) and convinced them that indices

out of range were not a common pitfall of programming but elementary errors

that could be controlled with proper declarations and constraint checking. Ada

83 also put concurrent programming in a mainstream programming language.

• Ada 95 benefited from a decade-long development in object-oriented

programming techniques, and successfully grafted the ideas of polymorphism

and dynamic dispatching onto a strongly-typed language with concurrency. It

enhanced programming-in-the large capabilities with child units and their

generic incarnations.

• Ada 2005 showed how data-based synchronization (protected types) and

concurrency (task types) could be unified through a novel use of interface

inheritance, and adopted a conservative model of multiple inheritance of

interfaces that has proved more robust than the more unrestricted models of MI.

Ada 2005 also introduced into the language an extensive container library,

following here the example of other established languages and many earlier

experimental high-level languages that showed the usefulness of reasoning over

data aggregates.

And now – Ada 2012, the latest version of the language whose description you are

holding, reflects both aspects of this dialectic process: it introduces new ways of

thinking about program construction, and it reflects developments in software

practice that hark back to the earlier days of our profession but that have seldom, if

ever, found their way into well-established programming languages.

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

The general rubric for these new/old ideas is Programming by Contract. The term
became well-known through the pioneering work of Bertrand Meyer and the design
of Eiffel, but it probably found more significant use in the SPARK community, in the
design of critical software for applications that require a real measure of formal
verification for their deployment.

Ada 2012 offers the programmer a wealth of new tools for specifying the intent
of a program: preconditions, postconditions, type invariants, subtype predicates. All
of these allow the software architect to present more clearly the intent of a piece of
software, and they allow the compiler and/or the run-time system to verify that the
software behaves as intended. The use of pre- and postconditions was proposed a
generation ago by E. Dijkstra and C.A.R. Hoare, but their pioneering efforts were
not widely adopted by the software community, among other things because good
language support for these mechanisms was lacking. Their introduction in a
language whose user community is particularly concerned with mission-critical
software reflects the fact that concerns about safety and security are more urgent
than ever. We can expect that these techniques will be adopted early and
enthusiastically by the aerospace and automotive software development
community, as they have been in the small and dedicated SPARK community.

Preconditions, postconditions, type invariants and type predicates are logical
assertions about the behavior of a given construct. When these assertions involve
data aggregates (vectors, sets, and other container types) it is particularly
convenient to use notations from first-order logic, namely quantified expressions.

An important syntactic innovation of Ada 2012 is the introduction of quantified
expressions both in their universal form (all elements of this set are French Cheeses)
and their existential form (some element of this vector is purple). As a result, the
language includes the new keyword some. These quantified expressions are of
course implicit loops over data aggregates, and in parallel with their introduction,
Ada 2012 has extended considerably the syntax of iterators over containers. A
generalized notion of indexing now allows the programmer to define their own
iterable constructs, as well as mapping between arbitrary types.

Contracts, quantified expressions, and generalized indexing may appear to be
miscellaneous additions to an already large language; in fact they are elegantly
unified under the umbrella of a new construct: the Aspect Specification, which also
generalizes and unifies the earlier notions of attributes and pragmas. The coherence
of the language has thus been enhanced as well.

Programming languages must also respond to developments in Computer
Hardware. The most significant development of the last decade has been the
appearance of multicore architectures, which provide abundant parallelism on a
single chip. Making efficient use of the computer power now available on a single
processor has been the goal of much development in language design. Ada 2012
provides tools for describing multicore architectures, and for mapping computing
activities onto specific cores or sets of them.These are novel capabilities for a
general-purpose programming language, and we can expect them to have a
profound impact on the practice of parallel programming.

This thumbnail description of the high points of the new version of the language
is intended to whet your appetite for the pages that follow. Once again, John Barnes
has provided a wonderfully lucid, learned, and insightful description of the latest
version of Ada. He has been the tireless explicator of the design and evolution of
the language over more than three decades, and the Ada community has acquired its

xvi Foreword

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

understanding and love of the language from his prose. A programming language is
a tool for thought, and most Ada users have learned how to think about programs
from John Barnes’s books. I can only hope that the widest possible audience will
learn to think straight from the exciting descriptions that follow.

The design of Ada 2012 is once again the result of the collective effort of the
Ada Rapporteur group, an extremely talented group of language designers who
combine deep industrial experience with an equally deep knowledge of
programming language semantics and theoretical computer science. The ARG, of
which John Barnes has been an invaluable member from the inception of Ada, has
once again created a modern and elegant programming language that addresses the
needs of a new generation of software designers. It has been an enormous privilege
to work with them. I trust the reader will enjoy the result of their work for years to
come. Happy Programming!

Ed Schonberg
AdaCore

Chairman, Ada Rapporteur Group
New York, March 2014

Foreword xvii

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

xix

Welcome to Programming in Ada 2012 which has been triggered by the recent
ISO standardization of Ada 2012.

The original language, devised in the 1980s, is known as Ada 83 and was
followed by Ada 95, Ada 2005, and now Ada 2012. Ada has gained a reputation as
being the language of choice when software needs to be correct. And as software
pervades into more areas of society so that ever more software is safety critical or
security critical, it is clear that the future for Ada is bright. One observes, for
example, the growth in use of SPARK, the Ada based high integrity language widely
used in areas such as avionics and signalling.

Ada 83 was a relatively simple but highly reliable language with emphasis on
abstraction and information hiding. It was also notable for being perhaps the first
practical language to include multitasking within the language itself.

Ada 95 added extra flexibility to the strongly typed and secure foundation
provided by the Software Engineering approach of Ada 83. In particular it added the
full dynamic features of Object Oriented Programming (OOP) and in fact was the
first such language to become an ISO standard. Ada 95 also made important
structural enhancements to visibility control by the addition of child units, it greatly
improved multitasking by the addition of protected types, and added important basic
material to the standard library.

Ada 2005 then made improvements in two key areas. It added more flexibility
in the OOP area by the addition of multiple inheritance via interfaces and it added
more facilities in the real-time area concerning scheduling algorithms, timing and
other matters of great importance for embedded systems. It also added further
facilities to the standard library such as the ability to manipulate containers.

Ada 2012 makes further important enhancements. These include features for
contracts such as pre- and postconditions, tasking facilities to recognize multicore
architectures, and major additions and improvements to the container library.

In more detail, the changes include

• Contracts – pre- and postconditions, type invariants, and subtype predicates
are perhaps the most dramatic new features. The introduction of these features
prompted a rethink regarding the specification of various properties of entities
in general. As a consequence the use of pragmas has largely been replaced by
the elegant new syntax of aspect specifications which enables the properties
to be given with the declaration of the entities concerned.

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

• Expressions – the introduction of the contract material showed a need for more
flexible expressions. Accordingly, Ada now includes conditional expressions,
case expressions, quantified expressions and more flexible forms of
membership tests. A new form of function is also introduced in which the body
is essentially given by a single expression.

• Structure and visibility – perhaps the most startling change in this area is
allowing functions to have parameters of all modes. This removes the need for
a number of obscure techniques (dirty tricks really) which had been used.
Other important improvements concern incomplete types.

• Tasking – Ada 2012 has new features describing the allocation of tasks to
individual processors and sets of processors; these additions were prompted
by the rapid growth in the use of multicore architectures.

• Generally – new flexible forms of iterators and dereferencing are introduced
mainly for use with containers. Better control of storage pools is permitted by
the introduction of subpools.

• Predefined library – some improvements are made concerning directories
and a feature is added for the identification of locale. However, the most
important improvement is the addition of many new forms of containers.
These include multiway trees and task-safe queues. There are also bounded
forms of all containers which are important for high integrity systems where
dynamic storage management is often not permitted.

This book follows the tradition of its predecessors. It presents an overall
description of Ada 2012 as a language. Some knowledge of the principles of
programming is assumed but an acquaintance with specific other languages is by no
means necessary.

The book comprises 27 chapters grouped into four parts as follows

• Chapters 1 to 4 provide an overview which should give the reader an
understanding of the overall scope of the language as well as the ability to run
significant programs as examples – this is particularly for newcomers to Ada.

• Chapters 5 to 11 cover the small-scale aspects such as the lexical details, scalar,
array and simple record types, control and expression structures, subprograms
and access types.

• Chapters 12 to 22 discuss the large-scale aspects including packages and private
types, contracts, separate compilation, abstraction, OOP and tasking as well as
exceptions and the details of numerics.

• Chapters 23 to 27 complete the story by discussing the predefined library,
interfacing to the outside world and the specialized annexes; there is then a
finale concluding with some ruminations over correctness and a brief
introduction to SPARK.

The finale includes, as in its predecessors, with the fantasy customer in the shop
trying to buy reusable software components and whose dream now seems as far
away or indeed as near at hand as it did many years ago when I first toiled at this
book. The discussion continues to take a galactic view of life and perhaps echoes
the cool cover of the book which depicts the Ice Comet.

xx Preface

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Those familiar with Programming in Ada 2005 might find the following

summary of key changes helpful

• The number of chapters has grown from 25 to 27. The new chapter 8 covers the

new forms of expressions such as if expressions, case expressions, and

quantified expressions. The new chapter 16 discusses the material on contracts.

The chapter on containers (now chapter 24) has grown because of the

introduction of containers for multiway trees, single indefinite objects, and

various forms of queues. A number of existing chapters have additional sections

such as that on aliasing.

• The revisions to produce Ada 2012 have impacted to a greater or lesser extent

on many aspects of the language. Most chapters conclude with a checklist

summarizing important points to remember and listing the main additions in

Ada 2012.

• As a consequence the book is now some 120 pages longer. It would have been

even longer had I not decided that it was unnecessary to include the answer to

every exercise. Accordingly, the printed answers cover just the introductory

chapters (for the benefit of those entirely new to Ada) and those exercises that

are referred to elsewhere in the book. But all the answers are on the associated

website.

The website also includes the six sample programs both in text form and as

executable programs, some material from earlier versions of this book which now

seem of lesser importance but which I nevertheless was reluctant to lose completely.

More details of the website will be found below.

And now I must thank all those who have helped with this new book. The

reviewers included Janet Barnes, Alan Burns, Rod Chapman, Jeff Cousins, Bob

Duff, Stuart Matthews, Ed Schonberg, Tucker Taft, and Andy Wellings. Their much

valued comments enabled me to improve the presentation and to eliminate a number

of errors. Some of the new material is based on parts of the Ada 2012 Rationale and

I must express my special gratitude to Randy Brukardt for his painstaking help in

reviewing that document.

Finally, many thanks to my wife Barbara for help in typesetting and proof-

reading and to friends at Cambridge University Press for their continued guidance

and help.

John Barnes

Caversham, England

March 2014

The 2016 update

Whenever a new standard appears and is put into use, it is almost inevitable that

various imperfections are soon discovered. Ada 2012 was no exception and a

number of corrections and improvements were deemed to be necessary. These

alterations were processed in the usual manner by the Ada Rapporteur Group and

resulted in a Corrigendum which was approved and published by ISO in February

Preface xxi

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

2016. This updated reprint of Programming in Ada 2012 accordingly covers this

revised 2016 standard.

The revisions are described by Ada Issues (AIs) and a number of these are

mentioned in the Index. A few early issues were actually captured in the original

printing and some form the material in Section 16.5 regarding the output of

messages arising from the violation of predicates. Another early change concerned

the package Ada.Locales whose original form quite frankly did not work at all.

Many of the recent issues relate to improving the performance and description

of contracts which were perhaps the most important addition in Ada 2012. Another

improvement is that I have taken this opportunity to replace the use of library

pragmas such as Pure and Preelaborate by the corresponding aspect clauses. This

rearrangement saves space and clutter and will be particularly beneficial when a

number of other matters are addressed by what I hope will be Ada 2022.

As well as including new material, I have taken the opportunity to correct all

errors that have been discovered. I am particularly grateful to a number of readers

who have pointed out errors and I must especially thank Pascal Pignard and Tama

McGlinn for their many messages and to Jeff Cousins for his help in making

corrections. As well as the technical errors there were a lot of unfortunate errors in

the cross references which have also been corrected.

John Barnes

Caversham, England

February 2021

Notes on the website

The website is www.cambridge.org/barnes. It contains three main things: the full

answers to all the exercises, some obscure or obsolete material on exceptions,

discriminants, and iterators which were in previous versions of the book, and

additional material on the six sample programs.

I do hope that readers will find the sample programs on the website of interest.

I am aware that they are a bit intricate. But this seems almost inevitable in order to

illustrate a broad range of features of Ada in a reasonably concise manner.

However, in most cases they build on examples in preceding chapters and so should

not be difficult to follow.

Each example commences with some remarks about its purpose and overall

structure. This is followed by the text of the program and then some notes on

specific details. A desire to keep the program text short means that comments are at

a minimum. However, the corresponding source text on the website includes much

additional commentary. The website also includes further discussion and

explanation and suggestions for enhancement. In general the programs use only

those features of the language explained in detail by that point in the book.

The first program, Magic Moments, illustrates type extension and dispatching.

It shows how the existence of common components and common operations enable

dispatching to compute various geometrical properties almost by magic.

The Sylvan Sorter is an exercise in access types and basic algorithmic

techniques including recursion.

xxii Preface

www.cambridge.org/9781107424814
www.cambridge.org

Cambridge University Press
978-1-107-42481-4 — Programming in Ada 2012
John Barnes
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

The Rational Reckoner provides two examples of abstract data types – the
rational numbers themselves and the stack which is the basis of the calculator part
of the program.

The Super Sieve illustrates multitasking and communication between tasks both
directly through entry calls and indirectly through protected objects. For added
interest it is made generic so that more general primes than the familiar integers
may be found. This provides the opportunity to use a discriminated record type and
a modular type to represent binary polynomials.

The program Wild Words is probably the hardest to follow because it is not
based on any particular example described in the preceding chapters. It illustrates
many of the facilities of the character and string handling packages as well as the
generation of random numbers.

The final program, Playing Pools, shows how users might write their own
storage allocation package for the control of storage pools. The example shown
enables the user to monitor the state of the pool and it is exercised by running the
familiar Tower of Hanoi program which moves a tower of discs between three
poles. Variety is provided by implementing the stack structures representing the
three poles (and defined by an interface) in two different ways and dispatching to
the particular implementation. The website includes an extended version which uses
three different ways.

Information on many aspects of Ada such as vendors, standards, books and so
on can be obtained from the websites listed in the Bibliography.

The website also includes a list of corrections and additions made by this
reprint.

Preface xxiii

www.cambridge.org/9781107424814
www.cambridge.org

