
Prologue: Hilbert’s last problem

David Hilbert presented his famous list of open mathematical problems at

the international mathematical congress in Paris in 1900. First in the list

was Cantor’s continuum problem, the question of the cardinality of the set

of reals numbers. The second problem concerned the consistency of the

arithmetic of real numbers, i.e., of analysis, and so on. These problems are

generally recognized and have been at the centre of foundational research

for a hundred years, but few would be able to state how Hilbert’s list ended:

namely with a 23rd problem about the calculus of variations – or so it was

thought until some years ago, when German historian of science Rüdiger

Thiele found from old archives in Göttingen some notes in Hilbert’s hand

that begin with:

As a 24th problem of my Paris talk I wanted to pose the problem: criteria for the

simplicity of proofs, or, to show that certain proofs are simpler than any others. In

general, to develop a theory of proof methods in mathematics.

The 24th problem thus has two parts: a first part about the notion of

simplicity of proofs, and a second one that calls for a theory of proofs in

mathematics. Just as the problems that begin the list, what we call Hilbert’s

last problem has been at the centre of foundational studies for a long time.

When Hilbert later started to develop his Beweistheorie (proof theory), its

aims were much more specific than the wording of the last problem suggests:

he put up a programme the aim of which was to save mathematics from

the threat of inconsistency, by which one would also ‘solve the foundational

problems for good’.

Gerhard Gentzen, a student of Paul Bernays with whom Hilbert was

working, set as his objective in the early 1930s ‘to study the structure of

mathematical proofs as they appear in practice’. He presented the general

logical structure of mathematical proofs as a system of rules of proof by

which a path is built from the assumptions of a theorem to its conclusion.

Earlier formalizations of logic had given a set of axioms and just two rules of

inference. Another essential methodological novelty in Gentzen’s work was

that he presented proofs in the form of a tree instead of a linear succession

from the given assumptions to the claim of a proof. Each step in a proof 1
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2 Prologue: Hilbert’s last problem

determined a subtree from the assumptions that had been made down to that

point, and these parts could be studied in isolation. Most importantly, such

parts of the overall proof could be combined in new ways, contrary to the

earlier linear style of proof. Gentzen was able to give for proofs in pure logic –

that is, without any mathematical axioms – combinatorial transformations

that brought these proofs into a certain direct form. Questions such as the

consistency and decidability of a system of rules of proof could then be

answered.

It has been generally thought that Gentzen’s analysis of the structure of

proofs cannot be carried through to perfection outside pure logic. This book

aims at presenting a method in which mathematical axioms are converted

into systems of rules of proof and the structure of mathematical proofs

analyzed in the same way as Gentzen analysed proofs in pure logic. The

overall aim is to gain a mastery over the combinatorial possibilities offered

by a system of mathematical axioms. As a rule, such a complete mastery of

the workings of an axiom system cannot perhaps be achieved. Our aim is

to try to make a positive contribution to Hilbert’s last problem by a gradual

development of ‘proof methods in mathematics’, inspired by the methods of

structural proof theory and illustrated by examples drawn mainly from the

elementary axiomatics of algebra and geometry, and from what are known

as systems of non-classical logic.
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1 Introduction

We shall discuss the notion of proof and then present an introductory

example of the analysis of the structure of proofs. The contents of the book

are outlined in the third and last section of this chapter.

1.1 The idea of a proof

A proof in logic and mathematics is, traditionally, a deductive argument

from some given assumptions to a conclusion. Proofs are meant to present

conclusive evidence in the sense that the truth of the conclusion should

follow necessarily from the truth of the assumptions. Proofs must be, in

principle, communicable in every detail, so that their correctness can be

checked. Detailed proofs are a means of presentation that need not follow

in any way the steps in finding things out. Still, it would be useful if there was

a natural way from the latter steps to a proof, and equally useful if proofs

also suggested the way the truths behind them were discovered.

The presentation of proofs as deductive arguments began in ancient

Greek axiomatic geometry. It took Gottlob Frege in 1879 to realize that

mere axioms and definitions are not enough, but that also the logical steps

that combine axioms into a proof have to be made, and indeed can be

made, explicit. To this purpose, Frege formulated logic itself as an axiomatic

discipline, completed with just two rules of inference for combining logical

axioms.

Axiomatic logic of the Fregean sort was studied and developed by Bert-

rand Russell, and later by David Hilbert and Paul Bernays and their students,

in the first three decades of the twentieth century. Gradually logic came to

be seen as a formal calculus instead of a system of reasoning: the language of

logic was formalized and its rules of inference taken as part of an inductive

definition of the class of formally provable formulas in the calculus.

Young Gerhard Gentzen, a student of Bernays, set as his task in 1932 to

develop a system of logic that is as close as possible to the actual proving

of theorems in mathematics. His basic observation was that reasoning in

mathematics uses assumptions from which conclusions are drawn. Some 3

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-41723-6 - Proof Analysis: A Contribution to Hilbert’s Last Problem
Sara Negri and Jan Von Plato
Excerpt
More information

http://www.cambridge.org/9781107417236
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

steps of reasoning analyse the assumptions into their components, others

move from these components towards a sought-for conclusion. The two-

way rules of such reasoning make up a system known as natural deduction
that has only rules of inference, but no logical axioms at all. This change from

axiomatic to rule-based systems marks a break with the existing axiomatic

tradition as upheld by Hilbert and Bernays. Each form of logical expression,

say a conjunction A&B (‘A and B ’) or an implication A ⊃ B (‘if A , then

B ’), has a rule that gives the sufficient conditions for inferring it: to infer

A&B , it is sufficient to have inferred the components A and B separately,

and to infer A ⊃ B , it is sufficient to add A temporarily to the stock of

assumptions that have been made, then to infer B . In these rules, logical

reasoning proceeds from the desired result to its deductive conditions. The

reverse step is, then, to reason from an assumption or previously reached

conclusion to its deductive consequences: to infer A from A&B , to infer B

from A&B , and to infer B from A ⊃ B and A together.

Gentzen’s analysis of the structure of proofs in logic was a perfect success.

He was able to show that the means for proving a logical theorem can be

restricted to those that concern just the logical operations that appear in

the theorem. Instead of logical axioms, there are just rules of inference,

separately for each logical operation such as conjunction or implication, to

the said effect. Logic on the whole is seen as a method for moving from given

assumptions to a conclusion. The Fregean tradition, instead, presented logic

as consisting of a basic stock of logical truths, namely the axioms of logic,

together with two rules by which new logical truths can be proved from the

axioms.

When Gentzen’s logic is applied to axiomatic systems of mathematics, the

axioms take their place among the assumptions from which logical proofs

can start. It is commonly thought that Gentzen’s analysis of the structure of

proofs does not go through in such axiomatic extensions of pure logic. We

try to show that this need not be so: the topic of this book is a method that

treats axiomatic systems in a way analogous to Gentzen’s natural deduction

for pure logic, namely through the conversion of mathematical axioms into

rules of inference, and with results analogous to those obtained in the proof

analysis of pure logic.

1.2 Proof analysis: an introductory example

(a) Natural deduction. Gentzen’s rules of natural deduction give an induc-

tive definition of the notion of a derivation tree. Such a tree begins, i.e.,
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Introduction 5

has as leaves, formulas that are called assumptions. Each logical rule pre-

scribes how a derivation tree (in brief, a derivation) of the conclusion of

the rule is constructed from derivations of its premisses. The letter I indi-

cates that a formula with a specific structure is concluded or introduced,

and the letter E indicates that such a formula is, as one says, eliminated.

For conjunction A&B and implication A ⊃ B , Gentzen gave the following

rules:

Table 1.1 Gentzen’s rules for conjunction and implication

A B
A&B

&I
A&B

A
&E

A&B
B

&E

1

[A]....
B

A ⊃ B
⊃I,1

A ⊃ B A
B

⊃E

The rules, except for ⊃I , are straightforward. In rule ⊃I , a temporary

assumption A is made, and a derivation of B from A can be turned into

a derivation of A ⊃ B by the rule. The square brackets indicate that the

conclusion does not depend on the assumption A that has been closed or

discharged. A label, usually a number, indicates which rule closes what

assumptions.

Rules &I and ⊃E display one essential feature of Gentzen’s work: they

have two premisses so that derivation trees have binary branchings when-

ever these rules are applied. Each formula occurrence in a derivation tree

determines a subderivation that lets us derive the formula, from pre-

cisely the assumptions it depends on. Often such subderivations can be re-

arranged combinatorially so that the same overall conclusion is obtained in

a simpler way. Specifically, Gentzen’s main result about natural deduction

states that introductions followed by corresponding eliminations permit

such rearrangements, with the effect that these steps of proof get removed

from derivations. When no such simplifications are possible, all formulas in

a derivation are parts or subformulas of the open assumptions or the con-

clusion. A brief expression is that normal derivations have the subformula
property.

It is no exaggeration to say that the tree form of derivations that permits

their transformation, in contrast to the earlier linear arrangement of Frege,

Peano, Russell, and Hilbert and Bernays, was the key to all of Gentzen’s cen-

tral results: normalization in natural deduction, the corresponding method

of cut elimination in sequent calculus, and the proof of the consistency of

arithmetic.
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6 Introduction

Normalization consists in steps of conversion such as the following trans-

formation of a part of a derivation:

....
A

....
B

A&B
&I

A
&E

.... �

....
A....

We shall need the normalizibility of logical derivations for the separation of

logical and mathematical steps of proof. Gentzen’s rules of natural deduction

require some small changes presented in Chapter 2, before this separation

can be made completely transparent.

(b) The theory of equality. We assume given a domain D of individuals,

objects a, b, c . . . of whatever sort, and a two-place relation a = b inD with

the following standard axioms:

Table 1.2 The axioms of an equality relation

EQ1 Reflexivity: a = a,

EQ2 Symmetry: a = b ⊃ b = a,

EQ3 Transitivity: a = b & b = c ⊃ a = c .

These axioms can be added to a Frege–Hilbert-style axiomatization of logic.

We shall instead first add them to natural deduction with the result that

instances of the axioms can begin a derivation branch. Thus, when we ask

whether a formula A is derivable from the collection of formulas � by the

axioms of equality, arbitrary instances of the axioms can be added to �.

We consider as an example a derivation of d = a from the assumptions

a = b, c = b, and c = d:

Table 1.3 A formal derivation in the axiomatic theory of equality

a = d ⊃ d = a
a = c & c = d ⊃ a = d

a = b & b = c ⊃ a = c
a = b

c = b ⊃ b = c c = b
b = c

⊃E

a = b & b = c
&I

a = c ⊃Ec = d
a = c & c = d

&I

a = d
⊃E

d = a
⊃E

Each topformula in the derivation is either one of the atomic assumptions

or an instance of an equality axiom. The derivation tree looks somewhat
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Introduction 7

forbidding. The natural way to reason would be different, something like:

a is equal to b, b to c , c to d, therefore d is equal to a. Here the principles are

that equalities can be combined in chains and that equalities go both ways.

The latter was applied to get the link b equal to c from c equal to b, and to

get the conclusion d equal to a from a equal to d.

Logic in the derivation of d = a from the assumptions a = b, c = b, and

c = d seems like some kind of a decoration necessitated by the use of logic

in the writing of the axioms. We now want to say instead that a = b gives at

once b = a and that two equalities a = b and b = c give at once a = c :

Table 1.4 Symmetry and transitivity as rules of inference

a = b
b = a

Sym a = b b = c
a = c Tr

Our example derivation becomes:

Table 1.5 A formal derivation by the rules for equality

a = b
c = b
b = c

Sym

a = c Tr c = d
a = d

Tr

d = a
Sym

This should be contrasted with the logical derivation of Table 1.3.

To get the full theory of equality, we must add reflexivity as a zero-premiss
rule:

Table 1.6 The rule of reflexivity

a = a Ref

Now formal derivations start from assumptions and instances of rule Ref.

What about the role of logic after the addition of mathematical axioms

as rules? A premiss of an equality rule can be the conclusion of a logical rule

and a conclusion of an equality rule a premiss in a logical rule. It should be

clear that logic itself should not be ‘creative’ in the sense of making equalities

derivable from given equalities used as assumptions, if they were not already

derivable by just the equality rules. To show that there cannot be any such

creative use of logic, Gentzen’s normalization theorem comes to help. No

introduction rule can have as conclusions premisses of a mathematical rule,
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8 Introduction

because the latter do not have logical structure. Using a slight modification

of Gentzen’s elimination rules, the mathematical rules can be completely

separated from the logical ones, so that in a normal derivation, the former

are applied first, then the latter build up logical structure. Thus, if an

equality is derivable from given equalities in natural deduction extended

with the rules of equality, it is derivable by just the rules of equality. This

separation of logic from mathematical axioms goes through for a large class

of axiomatizations.

Assume there to be a derivation of the equality a = c from given assump-

tions a1 = c1, . . . , an = cn by the rules of equality. By what has been said,

no logical rules need be used. Assume there to be a term b in the deriva-

tion that is neither a term in the conclusion a = c nor a term in any of

the assumptions. There is thus some instance of rule Tr that removes the

unknown term b:

a = b b = c
a = c Tr

If the premiss a = b is a conclusion of rule Tr, we can permute up the

instance of Tr that removes b, as follows:

a = d d = b
a = b

Tr
b = c

a = c Tr �
a = d

d = b b = c
d = c

Tr

a = c Tr

A similar transformation applies if the second premiss b = c has been

derived by Tr. Thus, we may assume that neither premiss of the step of

Tr that removes the term b has been derived by Tr. It can happen that

both premisses have been derived by rule Sym. We then have a part of the

derivation and its transformation:

b = a
a = b

Sym
c = b
b = c

Sym

a = c Tr �

c = b b = a
c = a Tr

a = c Sym

In the end, at least one premiss of the step of Tr that removes the term b has

an instance of rule Ref as one premiss, as in

d = b b = b
Ref

d = b
Tr

Now the conclusion is equal to the other premiss, so the step of Tr can be

deleted. Tracing up in the derivation the premiss d = b, the permutations

can never lead to an instance of Tr that removes b and has an assumption as

one premiss, because then b would be a term known from the assumption.
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Introduction 9

Thus, a derivation can be so transformed that it cannot have any unknown

terms.

Consider next a derivation that has a ‘cycle’ or a ‘loop’, i.e., a branch with

the same equality occurring twice:

....
a = b....
a = b....

The part between the two occurrences can be cut out. This part may use some

equalities as assumptions that are not otherwise used in the derivation, but

their deletion just improves the result: we would get the conclusion with

fewer assumptions. When no loops are permitted, all derivations of an

equality a = c from the assumptions a1 = c1, . . . , an = cn have an upper

bound on size, here defined as the length of the longest derivation tree

branch: the number of distinct terms is at most 2n + 2; therefore the number

of distinct equalities is at most (2n + 2)2, an upper bound on height.

The above permutation argument could have been cut short as follows.

If the equality to be derived is not an instance of Ref, that rule can be left

out. If a premiss of Sym or Tr has been concluded by Ref, a loop is produced.

Therefore all terms must appear in equalities that are assumptions. Such

a simple argument does not usually work. The permutation argument,

instead, illustrates a type of combinatorial reasoning that is characteristic of

all that follows, beginning with the first real example, namely lattice theory

in Chapter 4.

1.3 Outline

(a) The four parts. The book has four parts. The first is based on natural

deduction in the sense that mathematical rule systems are formulated as

extensions of the logical rules of natural deduction. These rules define a

constructive system of logic in which existence proofs are effective and no

classical case distinctions (A or ¬A) are made. All elimination rules are

formulated in the manner of disjunction and existence elimination. As long

as an axiom system contains no essential disjunctions, ones that cannot

be converted into equivalent formulas without disjunctions, the logical

rules can be permuted below the mathematical ones. Therefore parts of
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10 Introduction

derivations by the latter rules can be separated from parts of derivations

by the logical rules. The choice of classical or intuitionistic logic plays in

this situation no role in the study of the derivations by such systems of

mathematical rules.

With essentially disjunctive axioms, such as the linearity of an order

relation, a � b ∨ b � a, a classical sequent calculus formulation of logic

permits the separation of logical and mathematical rules, in contrast to

natural deduction. Sequent calculus was invented by Gentzen because he

did not succeed in the proof analysis of classical logic formulated as a system

of natural deduction. Part II of the book is based on sequent calculus in

the sense that mathematical rule systems now extend the logical rules of

sequent calculus.

We begin with axiomatic systems the axioms of which are universal, i.e.,

the axioms are quantifier-free formulas such as a = b & b = c ⊃ a = c in

which a, b, and c are arbitrary parameters. Thus, such axioms could as

well be written in the form ∀x∀y∀z(x = y & y = z ⊃ x = z). In Chapter

5 and in a general way in Part III, a much wider class of axioms is shown

convertible to rules: those that are, in the terminology of category theory,

geometric implications. Mathematical rules can now contain eigenvariables,

which makes them behave like existential axioms, though without any visible

logical structure.

Parts I–III build up gradually a method for an analysis of the structure

of mathematical proofs. In each part, it is well defined to what kinds of

axiomatic systems of mathematics the method can be applied. Part IV

builds on all of the methods of the previous parts, but its focus is different.

It occurred to the first author in 2003 that the method of proof analysis

can be fruitfully applied to create systems of proof for modal logic and

related non-classical logics: what is called the relational semantics of non-

classical systems of logic, especially modal logic and its Kripke semantics,

is formalized within the proof-theoretical calculi we use. The central new

element, in comparison with Parts I–III, is the use of what are known as

labelled logical calculi. Then, the properties that have been used previously

on a semantical level can be represented by formulas that convert into rules

just like the mathematical axioms treated in Parts I–III. It remains to be seen

whether, in turn, the extension of purely logical proof systems in Part IV

will find applications to more traditional mathematical structures.

(b) Summary of the individual chapters. The following is a list of the

topics covered in the individual chapters, with an emphasis on new aspects

that the method of proof analysis displays as well as on new results.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-41723-6 - Proof Analysis: A Contribution to Hilbert’s Last Problem
Sara Negri and Jan Von Plato
Excerpt
More information

http://www.cambridge.org/9781107417236
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107417236: 


