Advanced Hard and Soft Magnetic Materials
CONTENTS

Preface ... xiii

Materials Research Society Symposium Proceedings xiv

PART I: PERMANENT MAGNET PROCESSING

*Hydrogenation Disproportionation Desorption Recombination
Processes Applied to NdFeB-, SmFe- and SmCo-Type Alloys 3
O. Gutfleisch, M. Kubis, A. Handstein, K.-H. Müller, and L. Schultz

*Isotropic and Anisotropic Nd-Fe-B Magnet Developments 15
V. Fanchanathan

*Praseodymium and Neodymium-Based Nanocrystalline Hard
Magnetic Alloys .. 27

Surface Coating of HDDR Processed and Mechanically Alloyed
Powder Based on RE-TM .. 41
S. Kobe, S. Novak, P.J. McGuinness, D. Mandrino, and M. Jenko

Microstructural and Magnetic Studies of HDDR Magnets From
High Boron NdFeB(Zr) Alloys 47
D.N. Brown, A.J. Williams, O. Gutfleisch, M. Strangwood,
and I.R. Harris

Effects of Quenching Environment on the Structure of
Melt-Spun Nd2Fe14B ... 57
M.J. Kramer, Y. Tang, K.W. Dennis, and R.W. McCallum

Processing Sm-Fe(Ta)-N Hard Magnetic Materials 63
K. Zuzek, P.J. McGuiness, and S. Kobe

Microstructural and Magnetic improvements in Tube-Cast
Pr-Fe-B-Cu Alloys Via Heat Treatments and Rapid Upset Forging 69
G.P. Hatch, A.J. Williams, and I.R. Harris

High-Performance, Light-Weight Thermoplastic/Rare Earth
Alloy Magnets ... 75
J. Xiao and J.U. Otaigbe

PART II: INTRINSIC PROPERTIES OF
PERMANENT MAGNETIC MATERIALS

*Neutron Diffraction Characterization of Permanent Magnet Phases 85
W.B. Yelon

*Invited Paper
Magnetic Characteristics of $\text{RCO}_{7-x}\text{Zr}_x$ Alloys
($R = \text{Sm, Pr, Er, Gd, and Y}$) ... 97
M.Q. Huang, W.E. Wallace, M.E. McHenry, S.G. Sankar, Q. Chen, and B.M. Ma

First-Principle Studies of Permanent-Magnet Materials 109
S.S. Jaswal and R.F. Sabiryanov

Electronic Structure and Magnetic Properties of $\text{Nd}_5\text{Fe}_{17}$ 121
R.F. Sabiryanov and S.S. Jaswal

Magnetic Anisotropy in Rare-Earth - Transition Metal Intermetallic Compounds ... 127
N.H. Luong, H.P. Thuy, P.H. Quang, and P.D. Thang

PART III: NANO SCALE HARD MAGNETISM I

Materials Properties and Utilization of $\text{Fe}_3\text{B/Nd}_2\text{Fe}_{14}\text{B}$-Type Nanocomposite Permanent Magnets Based on $\text{Nd}_2\text{Fe}_8\text{Cr-Co-B}$ 141
S. Hirosawa, H. Kanekiyo, and Y. Shigemoto

EMERGE—European Magnets With Enhanced Remanence for Greater Efficiency: A New and Cost Effective Magnetic Material for Use in Mid-Priced Applications 153
V. Archambault and D. Perre

Micromagnetics of Nanocrystalline Permanent Magnets 163
T. Schrefl and J. Pidler

Analysis of Magnetization Processes in Nanocomposite Hard Magnetic Materials From Macroscopic Magnetic Measurements and X-ray Magnetic Circular Dichroism 175
S. David, K. Mackay, M. Bonfim, S. Pizzini, A. Fontaine, and D. Givord

Residual Amorphous Phase in $\alpha\text{Fe/NdFeB}$ Nanocomposite Hard Magnets .. 187
M. Hamano, M. Yamasaki, H. Mizuguchi, T. Kobayashi, H. Yamamoto, and A. Inoue

PART IV: NANO SCALE HARD MAGNETISM II

Hard Magnetic Nanoparticles and Nanocomposites 197
A. Giri, R. Chowdary, and S.A. Majetich

A Study on the Phase Transformation and Exchange-Coupling of $(\text{Nd}_{0.95}\text{La}_{0.05})_5\text{Fe}_{75}\text{Co}_3\text{Nd}_2\text{B}_{10.5}$ Nanocomposites 209
Q. Chen, B.M. Ma, B. Lu, M.Q. Huang, and D.E. Laughlin

Invited Paper
Magnetic Properties of Polymer Bonded Exchange-Spring NdFeB Magnets ... 221
B. Mokal, N.A. Smith, A.J. Williams, and I.R. Harris

PART V: NANOSCALE HARD MAGNETISM III

Magnetization and Interactions of Single Domain Sm$_2$Co$_{17}$ Particles Embedded in CaO Matrix 229
W. Liu and P.G. McCormick

Magnetic Properties of αFe/NdFeB Nanocomposite Alloys Prepared by Two-Step Rapid Solidification 235
M. Yamasaki, H. Mizuguchi, H. Morioka, M. Hamano, and A. Inoue

Magnetic Domain Observation on Melt-Spun Nd-Fe-B Ribbons Using Magnetic Force Microscopy 241
A. Gavrin, C. Sellers, and S.H. Liou

Nd Rich Nd-Fe-B Tailored for Maximum Coercivity 247
Er. Girt, K.M. Krishnan, G. Thomas, C.J. Echer, and Z. Altounian

PART VI: PERMANENT MAGNET APPLICATIONS

*Novel Permanent Magnets and Their Uses .. 255
S. Constantinides

Applications of Rare-Earth Permanent Magnet Structures to Electrical Machinery 265
H.A. Leupold, A.S. Tilak, R.J. Marchand, and D.A. Lagraffe

Small Brushless DC-Motor With Sensorless Control—A Hollow Shaft Prototype 271
R. Hanitsch and B. Frenzel

New Series of Sm$_2$TM$_{17}$ Magnet Materials for Applications at Temperatures up to 550°C 277

PART VII: MICROSTRUCTURE AND MICROMAGNETICS

*High-Performance Magnets—Microstructure and Coercivity 291
J. Fidler, S. Sasaki, and E. Estevez-Rams

*Hysteresis Loops and Coercivity Mechanisms in Sintered and Nanocrystalline Permanent Magnets 303
H. Kronmüller, D. Goll, I. Kleinschroth, and A. Zern

*Invited Paper
Microstructural Investigation of RE₃(Fe, V)₂₉ (RE = Nd, Tb)

Magnetic Materials .. 315
J. Bernardi, M. Noner, J. Fidler, X.F. Han, and F.M. Yang

Magnetization Reversal in Melt-Quenched NdFeB 321
D.C. Crew, J.H. Lewis, P.O. McCormick, R. Street, and V. Panchanathan

Chemical Ordering and Microstructural Effects on Magnetic
Properties of Sm₂Fe₁₇ and Sm₂Fe₁₇Nx 327
B.E. Meacham, K.W. Dennis, R.W. McCallum, and J.E. Shield

PART VIII: THIN FILM PERMANENT MAGNETS

*Permanent Magnetism in Exchange-Coupled Nanocomposites 335
R. Skomski, J.P. Liu, and D.J. Sellmyer

A Study on High Coercivity and L₁₀ Ordered Phase in
CoPt and FePt Thin Films ... 347
R.A. Ristau, K. Barmak, L.H. Lewis, K.R. Coffey, and J.K. Howard

Magnetic Exchange-Coupling in CoPt/Co Bilayer Thin Films 353
J. Kim, K. Barmak, L.H. Lewis, D.C. Crew, and D.O. Welch

Epitaxial Co/NiAl Thin Film Growth on Si Substrates 359
H. Gong, W. Yang, D.N. Lambeth, and D.E. Laughlin

The Influence of Microstructure on the Magnetic Properties in
Nanostructured CoPt L₁₀ Thin Films 365
S. Jeong, M.E. McHenry, and D.E. Laughlin

PART IX: FINE PARTICLE MAGNETS

*Chemical Characterization of Magnetic Materials
at High Spatial Resolution ... 373
J.H.J. Scott

*Controlled Assembly of Monodisperse ε-Cobalt-Based
Nanocrystals .. 385
S. Sun, C.B. Murray, and H. Doyle

Thermal Plasma Synthesis of γ-Fe₅N₃ Nanoparticles as Precursors
for the Fe₁₆N₂ Synthesis by Annealing 399
Z. Turgut, D.E. Ferguson, M.Q. Huang, W.E. Wallace, and M.E. McHenry

A Novel Apparatus for the Synthesis of Graphite Encapsulated
Metallic Nanocrystals .. 405
K.L. Klug, D.L. Johnson, and V.P. Dravid

*Invited Paper
The Kinetics of Formation of Nanocrystalline γ-Ni-Fe During Mechano-Chemical Synthesis .. 409
P. Knorr, B.S. Kim, and J.S. Lee

GMR Effect and Properties of CoAg Granular Films Formed by Implantation With a Metal Vapor Vacuum Arc Ion Source 415
S.P. Wong, M.F. Chiah, W.Y. Cheung, R. Ke, J.B. Xu, and X.X. Zhang

Interferometry of Optical Second Harmonic Generation From Gd-Containing Langmuir-Blodgett Superstructures: Magneto-Induced Effects ... 421

A Method for Controlled Synthesis of Anisotropic Nanoparticles and Nanosystems ... 427
G.B. Khomutov, S.P. Gubin, Yu.A. Koksharou, V.V. Khanin, A.Yu. Obidenou, E.S. Soldatou, and A.S. Trifonou

PART X: NANOCRYSTALLINE ANTIFERRO- AND FERRIMAGNETS

"Synthesis and Characterization of Antiferromagnetic KMnF$_3$ Nanoparticles ... 435
C. Sangregorio, E.E. Carpenter, and C.J. O'Connor

Polymer Coated Nanoparticulate Ferrite Powders: Properties and Application ... 443
D. Vollath, D.V. Szab6, and J. Puchs

Giant Magnetoresistance of Electrostatic Self-Assembled Fe$_3$O$_4$ Nanocluster and Polymer Thin Films 449
Y. Liu, R.O. Claus, and F. Zhang

PART XI: ULTRASOFT NANOCRYSTALLINE AND AMORPHOUS MATERIALS I

"Nanocrystalline Soft Magnetic Fe-M-B (M = Zr, Hf, Nb) "NANOPERM," Fe-M-O (M = Zr, Hf, Rare Earth) Alloys and Their Applications ... 457
A. Makino, A. Inoue, and T. Masumoto

*Magnetic Properties of HITPERM (Fe,Co)$_{88}$Zr$_7$B$_4$Cu$_1$
Nanocrystalline Magnets ... 469
M.A. Willard, M. Gingras, M.J. Lee, V.G. Harris, D.E. Laughlin, and H.E. McEnery

*Magnetic Properties of HITPERM (Fe,Co)$_{88}$Zr$_7$B$_4$Cu$_1$
Nanocrystalline Magnets ... 469
M.A. Willard, M. Gingras, M.J. Lee, V.G. Harris, D.E. Laughlin, and H.E. McEnery

*Magnetic Properties of HITPERM (Fe,Co)$_{88}$Zr$_7$B$_4$Cu$_1$
Nanocrystalline Magnets ... 469
M.A. Willard, M. Gingras, M.J. Lee, V.G. Harris, D.E. Laughlin, and H.E. McEnery

"Air Force Application of Advanced Magnetic Materials 481
R.T. Fingers and C.S. Rubertus

*Invited Paper
Influence of the Alloy Composition on the Magnetic Properties of Nanocrystalline Fe_{80}M_{7}B_{12}Cu_{1} (M: Ti, Ta, Nb, Mo) ... 487
M. Kopcewicz, A. Grabias, and B. Idzikowski

Soft Magnetic Properties and Structure of Nanocrystalline Alloys Based on Finemet ... 493
I. Todd, H.A. Davies, M.R.J. Gibbs, D. Kendall, and R.V. Major

Properties of Giant Magneto-Impedance Material for a Novel Integrating Magnetic Sensor ... 499

PART XII: ULTRASOFT NANOCRYSTALLINE AND AMORPHOUS MATERIALS II

*Effect of Cu on Microstructural Evolution of Nanocrystalline Soft and Hard Magnetic Materials ... 507
K. Hono, D.H. Ping, and S. Hirosawa

*Lorentz Microscopy and Electron Holography of Nanocrystalline Magnetic Materials ... 519
Marc De Graef

*Magnetic Force Microscopy Study of New Nanocrystalline Soft MagneticRibbons ... 531
M.E. Hawley, G.W. Broun, D.J. Thoma, M.A. Willard, D.E. Laughlin, and M.E. McHenry

Surface Analysis of the Nanocrystalline Fe-Based Alloys by Conversion Electron Mössbauer Spectroscopy ... 543
A. Grabias, M. Kopcewicz, and B. Idzikowski

PART XIII: ULTRASOFT NANOCRYSTALLINE AND AMORPHOUS MATERIALS III

Crystallization and Nanocrystallization Kinetics of Fe-Based Amorphous Alloys ... 551

Quantitative Crystallization and Nano-Grain Size Distribution Studies of a FeCuNbSiB Nanocrystalline Alloy ... 557
M.S. Leu and T.S. Chin

RF-Mössbauer Study of the Compositional Dependence of Short Range Order in Amorphous Fe-M-B-Cu Alloys ... 563
M. Kopcewicz, A. Grabias, and B. Idzikowski

*Invited Paper
Influence of Nanocrystallization on the High-Frequency Magnetoimpedance in Ultrathin Fe83Cu1Nd7B9 Melt-Spun Ribbons 569
L. Brunetti, O. Rampado, P. Tiberto, and F. Vinal

Element-Specific Magnetization Reversal in Fe/Ce Multilayers 575
M. Münzenberg, M. Arend, W. Pelsch, S. Pizzini, A. Fontaine, T. Neisius, and S. Pascarelli

PART XIV: NANOCRYSTALLINE MAGNETIC THIN FILMS

PVD Growth of fcc Metal Films on Single Crystal Si and Ge Substrates ... 583
K.H. Westmacott, S. Hinderberger, T. Radetic, and U. Dahmen

Crystalline Texture of CoCrPt Films on CrMn/NiAl and Cr/NiAl Underlayer Structures ... 593
J. Zou, B. Lu, A.E. Bayer, D.E. Laughlin, and D.Y. Lambeth

Magnetic and Structural Properties of Laser-Ablated Planar and Cylindrical Co Thin Films ... 599
V. Madurga, J. Vergara, R.J. Ortega, I.P. de Landazabal, and C. Paviéres

C-Axis Perpendicularly Oriented Barium Ferrite Thin Film Media on Silicon Substrate ... 605
Z. Zhuang, M.H. Kryder, R.M. White, and D.E. Laughlin

Structure and Magnetic Properties of Fe-N Thin Films Grown by ECR Deposition .. 611
S. Németh, H. Akinaga, H. Boeue, H. Bender, J. de Boeck, and G. Borghs

Investigations on In Situ Nanocrystallization and Magnetic Properties for Amorphous Fe78Si8B13 Ribbons 617
X. Sun, A. Cabral-Prieto, and M. Jose Yacaman

Author Index .. 623
Subject Index .. 627
Many recent advances in magnetic materials have resulted from the ability to structure the materials on an appropriate magnetic length scale. This is typically the exchange length or the domain wall width of a hard phase, but in either case the characteristic length scale is a few nanometers. As the dimensions of the grains in a magnetic nanostructure approach this limit, the magnetic properties become significantly different from those in the bulk. Some examples are the following: remanence enhancement in isotropic, single-phase hard nanostructures, exchange spring behavior of nanostructures composed of hard and soft grains where the intrinsic magnetic properties such as magnetization and anisotropy are the volume-weighted averages of the two components, vanishing anisotropy in nanostructures composed of randomly-oriented soft grains and volume-averaging of magnetostriction in nanocomposites of two soft phases. In these examples, nanostructured materials significantly extend the range of available magnetic properties. A range of materials processing issues centers on the need to control nucleation and crystal growth on a very small length scale. Another focus is on the nature of the grain boundaries and the exchange coupling across them. The problems encountered here reappear when considering planar nanostructures such as multilayers or spin-polarized tunnel junctions, where the spin diffusion length is an additional length scale that has to be taken into consideration.

The papers in this proceedings volume were presented April 5–9 at Symposia H and I at the 1999 MRS Spring Meeting in San Francisco, California. Symposium H was on "Advanced Hard Magnets—Principles, Materials, and Processing," and Symposium I was on "Amorphous and Nanocrystalline Materials for Hard and Soft Magnetic Applications." In addition, several papers on magnetic thin films from Symposium L, "Polycrystalline Metal and Magnetic Thin Films," have been included to give the reader an overview of recent developments in the field.

Michael Coey
Laura H. Lewis
Bao-Min Ma
Thomas Schrefl
Ludwig Schultz
Josef Fidler
Vincent G. Harris
Ryusuke Hasegawa
Akihisa Inoue
Michael McHenry

June 1999