MATERIALS RESEARCH SOCIETY
SYMPOSIUM PROCEEDINGS VOLUME 490

Semiconductor Process and Device Performance Modelling

Symposium held December 2–3, 1997, Boston, Massachusetts, U.S.A.

EDITORS:

Scott T. Dunham
Boston University
Boston, Massachusetts, U.S.A.

Jeffrey S. Nelson
Sandia National Laboratories
Albuquerque, New Mexico, U.S.A.

MRS
Materials Research Society
Warrendale, Pennsylvania
CONTENTS

Preface ... ix

Materials Research Society Symposium Proceedings x

PART I: BULK PROCESS MODELLING

3-D Atomistic Simulations of Submicron Device Fabrication 3
Marius M. Bunea and Scott T. Dunham

Arsenic Deactivation in Silicon .. 9
M.A. Berding and A. Sher

A New Practical Approach to Implement a Transient Enhanced Diffusion Model into an FEM-Based 2-D Process Simulator 15
Moriyuki Sugiyasu, Kainla Suzuki, Syulchi Kojima, Yasushi Ohyama, and Hiroshi Goto

Atomistic Modelling of the Ion Implantation Step Within a 2-D Process Simulator ... 21
Bruno Schmidt, Matthias Posselt, Norbert Strecker, and Thomas Feudel

Computationally Efficient Model for 2-D Ion Implantation Simulation 27
Misha Temkin and Ivan Chakarov

A Three-Dimensional Monte Carlo Model for Phosphorus Implants Into (100) Single-Crystal Silicon .. 33
Myung-Sik Son and Ho-Jung Hwang

First-Principles Study of Point-Defect Production in Si and SiC 41
W. Windl, T.J. Lenosky, J.D. Kress, and A.P. Voter

The Effect of a Thin Sample on the Extended Defect Evolution in Si+ Implanted Si ... 47
Jing-Hong Li and Kevin S. Jones

Atomic Force Microscope Study of Two-Dimensional Dopant Delineation by Selective Chemical Etching 53
Kwang-Ri Choi, Tae-Yeon Seong, Seonghoon Lee, Hyunsang Hwang, and Yong Sun Sohn

*Atomic Dynamics During Silicon Oxidation and the Nature of Defects at the Si-SiO₂ Interface .. 59
S.T. Pantelides and M. Ramamoorthy

Physical Model and Numerical Results of Dissociation Kinetics of Hydrogen-Passivated Si/SiO₂ Interface Defects 71
G.V. Gadiyak

*Invited Paper
Nucleation and Growth of Voids in Silicon 77
P.S. Plekhanov, U.M. Gösele, and T.Y. Tan

*The Application of GaAs TCAD in Industry 83
P.A. Blakey, Deepak K. Johnson, C. Recker, and S. Varadarajan

Modelling of Atom Diffusion and Segregation in
Semiconductor Heterostructures 93
Hartmut Bracht, Wladek Walukiewicz, and Eugene E. Itatier

Simulation of Under- and Supersaturation of Gallium Vacancies
in Gallium Arsenide During Silicon In- and Outdiffusion 99

Fermi-Level Effect on Group III Atom Interdiffusion in III-V
Compounds: Bandgap Heterogeneity and Low Silicon-Doping 105

Modelling of the Surface Annihilation of Excess Self-Interstitials
Generated by Gold Diffusion into Silicon 111
n.A. Stolwijk, W. Lerch, and A. Giese

Gold Diffusion in Silicon During Gettering by an
Aluminum Layer ... 117
Subhash M. Joshi, Ulrich M. Gösele, and Teh Y. Tan

Defect Reactions Induced by Reactive Ion Etching 123
Song Zhao and Lionel C. Kimerling

Influence of RTP on Vacancy Concentrations 129
M. Jacob, P. Pichtler, M. Wohs, H. Ryssel, and R. Faisler

Computer Simulation of Thermomigration Process 135

PART II: EQUIPMENT MODELLING

*Chemical Kinetics Models for Semiconductor Processing 143
Michael E. Coltrin, Ellen Meeks, Joseph F. Grcar, William G. Houl, Robert J. Kee, and J. Randall Creighton

Robust Reaction-Transport Models of MOVPE Reactors 155
C. Theodoropoullou, H.K. Moffat, and T.J. Mountziaris

Optimal Design of Stagnation-Flow MOVPE Reactors with
Axisymmetric Multi-Aerture Inlets 161
V. Gupta, C. Theodoropoullou, J.D. Peck, and T.J. Mountziaris

A Theoretical Study on the Fundamental Chemical Reactions
in Titanium Plasma-Enhanced CVD 167
K. Tsuda, K. Watanabe, Y. Ohshita, and T. Takada

*Invited Paper
Use of Rigorous Three-Dimensional Electromagnetic Simulation to Evaluate the Effectiveness of Optical Proximity Correction for Nonplanar Lithography 173
M.S. Yeung and E. Barouch

Modelling Analysis of Oxygen Transport During Czochralski Growth of Silicon Crystals .. 181

Towards the Optimization of AMT Barrel Reactors for Silicon Epitaxy ... 187
M. Masi, G. Radaelli, N. Roda, P. Raimondi, S. Carrà, G. Vaccari, and D. Crippa

Finite Element Analysis of a MOCVD Reactor Having a Close-Spaced Injector .. 193
Yang Ren Sun, David W. Weyburne, and Qing S. Paduano

PART III: TOPOGRAPHY MODELLING

*The Roles of "3-D/2-D" and "3-D/3-D" Topography Simulators in Virtual Wafer Fabs 201
T.S. Cale, T.P. Merchant, and L.J. Borucki

An Atomic-Scale Derived Continuous Approach for the Anisotropic Etching .. 213
N. Moldovan, S. Nedelcu, and H. Camon

Modelling of Grain Structure Evolution and its Impact on the Reliability of Al(Cu) Thin Film Interconnects 219
S.P. Riege, V. Andleigh, C.V. Thompson, and H.J. Frost

Simulation Study of IBE Process for III-V Compounds in Mesa and Trenches .. 225
L. Houlet, A. Rhallabi, and Q. Turban

PART IV: CHARACTERIZATION AND DEVICE MODELLING

Effects of Compositional Segregation and Short Channel on Threshold Voltage of n-MOSFET 233
Julie Y.H. Lee, Tom C.H. Lee, Mike Embry, Keenan Evans, Dan Koch, and Robert Tucker

Modelling and 2-D Numerical Simulation of Transient Phenomena in Floating Body SOI MOSFETs 239
A.M. Ionescu, F. Chaudier, and A. Chovet

*Invited Paper
Demonstration of Improved Quantitative Mobility Spectrum
Analysis (i-QMSA) ... 245
 I. Vurgaftman, J.R. Meyer, C.A. Hoffman, D. Redfern, J. Antoszewski,
 L. Faraone, and J.R. Lindemuth

Charge Transfer Modelling for Charge-Coupled Devices 251
 James P. Lavine, Eric Q. Stevens, Edmund K. Banghart,
 Eugene A. Trabka, Bruce C. Burkey, and David J. Schneider

Light-Controlled Switching Transients in MIS Silicon Structures With
Multichannel Insulator: Physical Processes and New Device Modelling ... 257
 A. Malik and R. Martins

Theoretical Modelling and Improved Thermoelectric Properties
in (111) and (001) Oriented PbTe/Pb1-xEu_xTe MQWs 263
 T. Koga, S.B. Cronin, T.C. Harman, X. Sun, and M.S. Dresselhaus

Author Index ... 269

Subject Index .. 271
PREFACE

The concept of a ‘virtual semiconductor fab’ requires a focused effort among engineering, physics, chemistry, materials, mathematical and computational sciences. Although widely used by the semiconductor industry, current technology computer-aided design (TCAD) struggles to keep pace with new generations of IC technology. The semiconductor industry needs improved, predictive physically-based modelling and simulation capabilities to decrease cost, improve efficiency, and provide TCAD tools to process developers before production begins. Without the use of more advanced ‘next generation’ TCAD models, future IC technology development will slow as a result of expensive and time-consuming experimental validation of processes and device performance.

This symposium brought together researchers from industry, universities, and national laboratories to highlight recent advances in TCAD, and to identify critical areas for future emphasis. Papers were solicited in both silicon and compound semiconductor process and device performance modelling. By bringing together silicon and compound semiconductor researchers, we hoped to facilitate cross-fertilization of ideas and modelling tool sets.

The main topics of the symposium were:

1. **Bulk Process Modelling**, including ion implantation, transient-enhanced diffusion, rapid thermal annealing, extended and point defects, dopant diffusion, and interfaces

2. **Equipment Modelling**, including fluid dynamics, heat transfer, chemical vapor deposition, thermal and plasma processing

3. **Topography Modelling**, including etch, deposition, interconnect reliability and grain structure evolution

4. **Characterization and Device Modelling**, including short-channel effects, quantitative mobility spectrum analysis, charge-coupled devices, and thermoelectrics

Scott T. Dunham
Jeffrey S. Nelson
August 1998