Chemical Processing of Dielectrics, Insulators and Electronic Ceramics
CONTENTS

Preface ... xi

Acknowledgments ... xiii

Materials Research Society Symposium Proceedings xiv

CHEMICAL VAPOR DEPOSITION
OF OXIDE CERAMICS

*Design, Synthesis and Characterization of Precursors for
Chemical Vapor Deposition of Oxide-Based Electronic Materials 3
 Oliver Just, Bettie Obi-Johnson, Jason Matthews, Dianne Levermore,
 Tony Jones, and William S. Rees, Jr.

*MOCVD of High-K Dielectrics and Conductive Metal Nitride
Thin Films .. 13
 Yoshihide Senzaki, Richard F. Hamilton, Kimberly G. Reid,
 Christopher C. Hobbs, Rama I. Hegde, and Mike J. Tiner

*Group IVB Oxides as High Permittivity Gate Insulators 23
 S.A. Campbell, B. He, R. Smith, T. Ma, N. Hoilien, C. Taylor,
 and W.L. Gladfelter

*Application of Pulsed Injection MOCVD to the Deposition of
Dielectric and Ferroelectric Oxide Layers and Superlattices 33
 Jean-Pierre Senateur, Johannes Lindner, François Weiss,
 Catherine Dubourdieu, Carmen Jimenez, and Adolfo Abrutis

Growth of MgO by Metal-Organic Molecular Beam Epitaxy 45
 Feng Niu, Brent H. Hoerman, and Bruce W. Wessels

Selection and Design of Precursors for the MOCVD of Lead
Scandium Tantalate .. 51
 A.C. Jones, H.O. Davies, T.J. Leedham, M.J. Crosbie, P.J. Wright,
 P. O’Brien, and K.A. Fleeting

Deposition of SiO₂:F:C Films With Low Dielectric Constant and With
High Resistance to Annealing 57
 J. Lubguban, Jr., Y. Kurata, T. Inokuma, and S. Hasegawa

*Invited Paper
Analysis of a TEOS/Oxygen Plasma: Influence of Energy and Particle Flux on the Deposition Parameters ... 63
M.L. Pereira da Silva, A.N. Rodrigues da Silva, and J.J. Santiago-Aviles

Metal Organic Chemical Vapor Deposition of Co-, Mn-, Co-Zr and Mn-Zr Oxide Thin Films .. 69
D. Barreca, F. Benetollo, M. Bozza, S. Bozza, G. Carta, G. Cavinato, G. Rossetto, and P. Zanella

Chemical Vapor Deposition of Conformal Alumina Thin Films 75
Bradley D. Fahlman and Andrew R. Barron

CHEMICAL VAPOR DEPOSITION OF NON-OXIDE CERAMICS

Monomeric Chelated Amides of Aluminum and Gallium: Volatile, Miscible Liquid Precursors for CVD .. 83
Seán T. Barry, Roy G. Gordon, and Valerie A. Wagner

Low Temperature Chemical Vapor Deposition of Titanium Nitride Thin Films With Hydrazine and Tetrakis-(dimethylamide)Titanium 91
Carmela Amato-Wierda, Edward T. Norton, Jr., and Derk A. Wierda

Aspects of Gas Phase Chemistry During Chemical Vapor Deposition of Ti-Si-N Thin Films With Ti(NMe2)4 (TDMAT), NH3, and SiH4 97
Carmela Amato-Wierda, Edward T. Norton, Jr., and Derk A. Wierda

Molecular Beam Mass Spectrometry Studies of the Thermal Decomposition of Tetrakis(dimethylamino)Titanium 103
Carmela C. Amato-Wierda, Edward T. Norton, Jr., and Derk A. Wierda

Low Temperature Thermal Chemical Vapor Deposition of Silicon Nitride Thin Films for Microelectronics Applications 109
Spyridon Skordas, George Sirinakia, Wen Yu, Di Wu, Haralabos Efstatidias, and Alain E. Kaloyeros

Methylamine Growth of SiCN Films Using ECR-CVD 115
Preparation of High-Quality Ultra-Thin Gate Dielectrics by Cat-CVD and Catalytic Anneal
Hidekazu Sato, Akira Izumi, and Hideki Matsumura

Group III Metal Sulfide Thin Films From Single-Source Precursors by Chemical Vapor Deposition (CVD) Techniques
Mike R. Lazell, Paul O'Brien, David J. Otway, and Jin-Ho Park

Iron Sulfide (FeS$_2$) Thin Films From Single-Source Precursors by Aerosol-Assisted Chemical Vapor Deposition (AACVD)
Paul O'Brien, David J. Otway, and Jin-Ho Park

Volatile Liquid Precursors for the Chemical Vapor Deposition (CVD) of Thin Films Containing Alkali Metals
Randy N.R. Broomhall-Dillard, Roy G. Gordon, and Valerie A. Wagner

MOCVD of CuIn$_x$E$_y$ (Where E = S or Se) and Related Materials for Solar Cell Devices
Michael Kemmler, Michael Lazell, Paul O'Brien, and David J. Otway

SOLUTION DEPOSITION OF ELECTRONIC CERAMICS

*Wet-Chemical Synthesis of Thin-Film Solar Cells

Synthesis of High-K Titanium Oxide Thin Films Formed by Metalorganic Decomposition
Hisashi Fukuda, Yoshihiro Ishikawa, Seiogo Namioka, and Shigeru Nomura

Sol-Gel Synthesis of BaTiO$_3$ Based Films for Photonic Applications
V. Fuflyugin, H. Jiang, F. Wang, P. Yip, P. Vakhutinsky, and J. Zhao

Ferroelectric Composite of Ba$_{1-x}$Sr$_x$TiO$_3$ With Al$_2$O$_3$ and MgO Synthesized by Sol-Gel Method
Pramod K. Sharma, K.A. Jose, V.V. Varadan, and V.K. Varadan

*Invited Paper
Epitaxial Growth of $\text{Sr}_{0.3}\text{Ba}_{0.7}\text{Nb}_2\text{O}_6$ Thin Films Prepared by Sol-Gel Process ... 181
Keishi Nishio, Jirawat Thongrueng, Yuichi Watanabe, and Toshio Tsuchiya

Deposition of Crack-Free BaTiO_3 and $\text{Pb(Zr,Ti)}_3\text{O}_3$ Films Over 1 μm Thick Via Single-Step Dip-Coating ... 187
H. Kozuka, M. Kajimura, K. Katayama, Y. Isota, and T. Hirano

Near-Stoichiometric Barium Titanate Synthesis by Low Temperature Hydrothermal Reaction ... 193
Kyoungja Woo, Guang J. Choi, and Young S. Cho

New Approaches to Chemical Bath Deposition of Chalcogenides 199
Paul O’Brien, Markus R. Heinrich, David J. Otway, Odile Robbe, Alexander Bayer, and David S. Boyle

Direct Fabrication of LiCoO_2 Film Electrodes Using Soft Solution-Processing in LiOH Solution at 20–200°C 205
S.W. Song, K.S. Han, M. Yoshimura, Y. Sato, and A. Tatsuhiro

Effect of Precursor Sol Aging on Sol-Gel Derived Ruthenium Oxide Thin Films ... 211

Pentadionate: An Alternate Sol-Gel Method for the Synthesis of Ferroelectric $\text{Ba}_3\text{Sr}_4\text{Ti}_3\text{O}_9$.. 217
Pramod K. Sharma, K.A. Jose, V.V. Varadan, and V.K. Varadan

Growth and Studies of Li (Mn, Co) Oxides for Battery Electrodes 223
S. Nieto-Ramos, M.S. Tomar, and R.S. Katiyar

Fabrication of Crack-Free $\text{La}_{0.2}\text{Sr}_{0.8}\text{CoO}_3$ Membranes on Asymmetric and Porous Ceramic Supports—Effects of a Metallic Covering ... 229
Z-D. Cao, L. Hong, and X. Chen
ALTERNATIVE CHEMICAL PROCESSING
METHODS AND CHARACTERIZATION
OF ELECTRONIC CERAMICS

Chemical Synthesis of Pure and Doped LaGaO_3 Powders of Oxide Fuel Cells by Amorphous Citrate/EG Method ... 237
A.C. Tas, H. Schluckwerder, P. Majewski, and F. Aldinger

Silicon Cleaning Methods Compared at Metal Concentrations Below 1E10 atoms/cm^2 ... 245
Joseph Ilardi, Rajananda Saraswati, and George Schwartzkopf

β-acetoxyethyl Silsesquioxanes: Chloride-Free Precursors for SiO_2 Films Via Staged Hydrolysis .. 251
Karin A. Ezbiansky, Barry Arkles, Russell J. Composto, and Donald H. Berry

High Density Plasma Etching of Ta_2O_5-Selectivity to Si and Effect of UV Light Enhancement .. 257

Study on ZrO_2 Deposited Directly on Si as an Alternative Gate Dielectric Material ... 263
Wen-Jie Qi, Renee Nieh, Byoung Hun Lee, Youngjoo Jeon, Laegu Kang, Katsunori Onishi, and Jack C. Lee

A Study on Hysteresis Effect of Barium Strontium Titanate Thin Films for Alternative Gate Dielectric Application 269
Wen-Jie Qi, Keith Zawadzki, Renee Nieh, Yongjoo Jeon, Byoung Hun Lee, Aaron Lucas, Laegu Kang, Jian-Hung Lee, and Jack C. Lee

A Study of the Oxygen Surface Exchange Coefficient on La_{0.5}Sr_{0.5}CoO_3-x Thin Films ... 275
X. Chen, S. Wang, Y.L. Yang, L. Smith, N.J. Wu, A.J. Jacobson, and A. Ignatiev

Crystallographic Orientation in Bulk Polycrystalline Silicon Carbide Produced by a Chemical Vapor Deposition (CVD) Process 281
James V. Marzik and William J. Croft

Structure-Property Relations in Sol-Coated PMN Ceramics: Microscopy, Dielectric and Electromechanical Response 287
A. Sehirlioglu and S.M. Pilgrim
The Control of Zn for ZST Microwave Ceramics With Low Sintering Temperature
Yong H. Park, Moo Y. Shin, Ji M. Ryu, and Kyung H. Ko

Stereochemical Structure for Sodium in Native and Thermal Silica Layers
A-M. Flank, F. Tenegal, P. Lagarde, C. Mazzara, and J. Jupille

Author Index

Subject Index
PREFACE

This volume contains papers from Symposium NN, "Chemical Processing of Dielectrics, Insulators and Electronic Ceramics," held November 29-December 1 at the 1999 MRS Fall Meeting in Boston, Massachusetts. This symposium continues the theme of a previous symposium (Mater. Res. Soc. Symp. Proc. 495 (1998)) on the creative use of chemistry in the fabrication of advanced electronic ceramics. The symposium focused on the chemical fabrication of a variety of oxide and non-oxide materials which are likely to play a crucial role in the development of the next generation of microelectronics devices.

The symposium consisted of eight oral and four poster sessions with a total of 68 papers being presented, 44 of which are included in this volume. These clearly demonstrate the multidisciplinary nature of the field, involving inorganic precursor chemistry, gas-phase and solid state chemistry, materials science, chemical physics, and chemical engineering.

A number of particularly "hot" areas of research were featured in the symposium, including the deposition of high-k dielectric gate oxides, ferroelectric oxide films for infrared and memory applications, low-k dielectrics, TiN and TaN diffusion barriers, and new precursors for III-V nitrides.

The emphasis throughout is on chemical methods for the controlled deposition of thin films, for which chemical vapor deposition (CVD) has proven to be a useful and versatile technique. A particularly noteworthy development is the use of liquid injection MOCVD for the deposition of oxide multilayers and superlattices. Despite the increasing use of CVD, solution deposition techniques such as sol-gel, metalorganic decomposition (MOD), hydrothermal processing, and chemical bath techniques were also prominently featured.

These proceedings overlap to some extent with a number of other symposia in the 1999 MRS Fall Meeting, including "Ferroelectric Thin Films VIII," "GaN and Related Alloys," and "Structure and Properties of Ultrathin Dielectric Thin Films on Silicon and Related Materials." It is intended that the current volume complements and forms a valuable supplement to these related symposia.

It is the sincere hope of the symposium organizers that this volume will prove to be a useful overview of current research trends in a dynamic and exciting area of solid state technology.

Anthony C. Jones
Janice Veteran
Donald Mullin
Reid Cooper
Sanjeev Kaushal

January 2000
ACKNOWLEDGMENTS

The success of the symposium is due to the efforts of many people to whom we are very grateful. We are grateful to all of the speakers, poster presenters, and authors whose contributions are represented in these proceedings. We thank the MRS staff and the Meeting Chairs whose patience and efforts made our tasks much easier. We are also very grateful to the organizations who provided generous financial support.

Invited Speakers and Session Chairs

William S. Rees Jr., Georgia Tech, Atlanta, Georgia
Yoshihide Senzaki, Schumacher Inc., Carlsbad, California
S.A. Campbell, University of Minnesota, Minneapolis, Minnesota
Jean-Pierre Senateur, LMGP, ENS de Physique de Grenoble, France
M. Yoshimura, Tokyo Institute of Technology, Japan
R.P. Raffaele, Rochester Institute of Technology, New York, New York
Roy Gordon, Harvard University, Boston, Massachusetts
Paul O'Brien, University of Manchester, UK
Janice Veteran, Advanced Micro Devices, Austin, Texas
Anthony C. Jones, Inorgtech Ltd. and Liverpool University, UK

Financial Support

MKS Instruments
Strem Chemicals Inc.
<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Editors, Year</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>561</td>
<td>Organic Nonlinear Optical Materials and Devices, B. Kippelen, H.S. Lackritz, R.O. Claus, 1999</td>
<td>1-55899-468-8</td>
<td></td>
</tr>
<tr>
<td>582</td>
<td>Molecular Electronics, S.T. Pantelides, M.A. Reed, J. Murday, A. Aviram, 2000</td>
<td>1-55899-490-4</td>
<td></td>
</tr>
</tbody>
</table>
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

Prior Materials Research Society Symposium Proceedings available by contacting Materials Research Society