Thermoelectric Materials 2000—
The Next Generation Materials for
Small-Scale Refrigeration and
Power Generation Applications
Thermoelectric Materials 2000—
The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications

Symposium held April 24–27, 2000, San Francisco, California, U.S.A.

EDITORS:

Terry M. Tritt
Clemson University
Clemson, South Carolina, U.S.A.

George S. Nolas
Marlow Industries
Dallas, Texas, U.S.A.

Gerald D. Mahan
University of Tennessee
Knoxville, Tennessee, U.S.A.

David Mandrus
Oak Ridge National Laboratory
Oak Ridge, Tennessee, U.S.A.

Mercouri G. Kanatzidis
Michigan State University
East Lansing, Michigan, U.S.A.
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York NY 10013-2473, USA

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107413016

Materials Research Society
506 Keystone Drive, Warrendale, PA 15086
http://www.mrs.org

© Materials Research Society 2001

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

This publication has been registered with Copyright Clearance Center, Inc.
For further information please contact the Copyright Clearance Center,
Salem, Massachusetts.

First published 2001
First paperback edition 2013

Single article reprints from this publication are available through
University Microfilms Inc., 300 North Zeeb Road, Ann Arbor, MI 48106

CODEN: MRSPDH

isbn 978-1-107-41301-6 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.

© in this web service Cambridge University Press
CONTENTS

Preface ............................................................................................................................................ xiii

Materials Research Symposium Proceedings ........................................................................... xv

SKUTTERUDITES

*The Synthesis of Metastable Skutterudites and Crystalline Superlattices ..................................................... Z1.1
   Heike Sellinschegg, Joshua R. Williams, Gene Yoon,
   David C. Johnson, Michael Kaeser, Terry M. Tritt,
   George S. Nolas, and E. Nelson

How Cerium Filling Fraction Influences Thermal Factors and Magnetism in Ce₅Fe₄ₓNiₓSb₁₂ ................................ Z1.2
   L. Chapon, D. Ravot, J.C. Tedenac, and F. Bouree-Vigneron

Thermoelectric Properties of Some Cobalt Phosphide-Arsenide Compounds .............................. Z1.4
   Anucha Watcharapasorn, Robert C. DeMattei, Robert S. Feigelson,
   Thierry Caillat, Alexander Borschchevsky, G. Jeffrey Snyder,
   and Jean-Pierre Fleurial

SUPERLATTICE

*Epitaxial Growth and Thermoelectric Properties of Bi₂Te₃ Based Low Dimensional Structures ..................................................... Z2.1
   Joachim Nurnus, Harald Beyer, Armin Lambrecht,
   and Harald Böttner

Synthesis and Physical Properties of Skutterudite Superlattices ....................................................... Z2.3
   Joshua R. Williams, David C. Johnson, Michael Kaeser,
   Terry M. Tritt, George S. Nolas, and E. Nelson

Artificially Atomic-Scale Ordered Superlattice Alloys For Thermoelectric Applications .................. Z2.4
   Sunglae Cho, Yunki Kim, Antonio DiVenere, George K.L. Wong,
   Arthur J. Freeman, John B. Ketterson, Linda J. Olafsen, Igor Vurgaftman,
   Jerry R. Meyer, Craig A. Hoffman, and Gang Chen

* Invited Paper
Thermoelectric Properties of PbSr(Se,Te)-Based Low Dimensional Structures

Harald Beyer, Joachim Nurnus, Harald Bottner, Armin Lambrecht, Lothar Schmitt, and Friedemann Völklein

NEW MATERIALS I

Thermoelectric Figure of Merit, ZT, of Single Crystal Pentatellurides (MTe$_5$, Se$_x$; $M = Hf$, Zr and x = 0, 0.25)

Roy T. Littleton IV, Terry M. Tritt, Bartosz Zawilski, Joseph W. Kolis, Douglas R. Ketchum, and M. Brooks Derrick

Optional Subtitle

Thermoelectric Properties of Selenide Spinels

G. Jeffrey Snyder, Thierry Caillat, and J-P. Fleurial

Thermoelectric Properties of Tl$_9$BiTe$_6$/Tl$_9$BiSe$_6$ Solid Solutions

Bernd Wölfing, Christian Kloc, and Ernst Bucher

Investigations of Solid Solutions of CsBi$_4$Te$_6$

Duck-Young Chung, Timothy P. Hogan, Nishant Ghelani, Paul W. Brazis, Melissa A. Lane, Carl R. Kannewurf, and Mercouri G. Kanatzidis

QUANTUM WIRES AND DOTS

Optional Subtitle

Carrier Pocket Engineering for the Design of Low Dimensional Thermoelectrics With High $Z_{3DT}$

Takaaki Koga, Stephen B. Cronin, and Mildred S. Dresselhaus

HALF-HEUSLER ALLOYS AND QUASICRYSTALS

Optional Subtitle

Effects of the Addition of Rhenium on the Thermoelectric Properties of the AlPdMn Quasicrystalline System


* Invited Paper
Effect of Substitutional Doping on the Thermal Conductivity of Ti-Based Half-Heusler Compounds

Sriparna Bhattacharya, Vijayabharathi Ponnambalam, Amy L. Pope, Y. Xia, S. Joseph Poon, Roy T. Littleton IV, and Terry M. Tritt

High Temperature Thermal Conductivity Measurements of Quasicrystalline Al_{70.8}Pd_{20.3}Mn_{8.3}

Philip S. Davis, Peter A. Barnes, Cronin B. Vining, Amy L. Pope, Robert Schneidmiller, Terry M. Tritt, and Joseph Kolis

TE THEORY

Theoretical Evaluation of the Thermal Conductivity in Framework (Clathrate) Semiconductors

Jianjun Dong, Otto F. Sankey, Charles W. Myles, Ganesh K. Ramachandran, Paul F. McMillan, and Jan Gryko

Electronic Structure of CsBi₄Te₆

Paul Larson, Subhendra D. Mahanti, Duck-Young Chung, and Mercouri G. Kanatzidis

Where Should We Look for High ZT Materials: Suggestions From Theory

Marco Fornari, David J. Singh, Igor I. Mazin, and Joseph L. Feldman

Enhancement of Power Factor in a Thermoelectric Composite With a Periodic Microstructure

Leonid G. Fel, Yakov M. Strelniker, and David J. Bergman

NEW MATERIALS II

Investigation of the Thermal Conductivity of the Pentatellurides (Hf_{1-x}Zr_{x}Te₃) Using the Parallel Thermal Conductance Technique

Bartosz M. Zawilski, Roy T. Littleton IV, Terry M. Tritt, Douglas R. Ketchum, and Joseph W. Kolis
Compositional and Structural Modifications in Ternary Bismuth Chalcogenides and Their Thermoelectric Properties

Duck-Young Chung, Melissa A. Lane, John R. Ireland, Paul W. Brazis, Carl R. Kannewurf, and Mercouri G. Kanatzidis

Doping Studies of n-Type CsBi₄Te₄ Thermoelectric Materials

Melissa A. Lane, John R. Ireland, Paul W. Brazis, Theodora Kyratsi, Duck-Young Chung, Mercouri G. Kanatzidis, and Carl R. Kannewurf

Exploring Complex Chalcogenides for Thermoelectric Applications

Ying C. Wang and Francis J. DiSalvo

POSTER SESSION

Semiconductors With Tetrahedral Anions as Potential Thermoelectric Materials

Thomas P. Braun, Christopher B. Hoffman, and Francis J. DiSalvo

Lattice Dynamics Study of Anisotropic Heat Conduction in Superlattices

B. Yang and G. Chen

Structure and Thermoelectric Properties of New Quaternary Tin and Lead Bismuth Selenides, K₁ₓM₄₋₂Bi₇₊ₓSe₁₅ (M = Sn, Pb) and K₁₋ₓSnₓBi₁₁₋₂Se₂₂

Antje Mrotzek, Kyoung-Shin Choi, Duck-Young Chung, Melissa A. Lane, John R. Ireland, Paul W. Brazis, Timothy P. Hogan, Carl R. Kannewurf, and Mercouri G. Kanatzidis

Processing, Characterization, and Measurement of the Seebeck Coefficient of Bismuth Microwire Array Composites

T.E. Huber and P. Constant

Characterization of New Materials in a Four-Sample Thermoelectric Measurement System

Nishant A. Ghelani, Sim Y. Loo, Duck-Young Chung, Sandrine Sportouch, Stephan de Nardi, Mercouri G. Kanatzidis, Timothy P. Hogan, and George S. Nolas
Crystal Growth of Ternary and Quaternary Alkali Metal Bismuth Chalcogenides Using Bridgman Technique
Theodora Kyratsi, Duck-Young Chung, Kyoung-Shin Choi, Jeffrey S. Dyck, Wei Chen, Ctirad Uher, and Mercouri G. Kanatzidis

Thermoelectric Properties of Doped Iron Disilicide
Jun-ichi Tani and Hiroyasu Kido

Transport Properties of the Doped Thermoelectric Material $K_2Bi_{8.8}Sb_{1.2}Se_{13}$
Paul W. Brazis, John R. Ireland, Melissa A. Lane, Theodora Kyratsi, Duck-Young Chung, Mercouri G. Kanatzidis, and Carl R. Kannewurf

Structural Properties of Strain Symmetrized Silicon/Germanium (111) Superlattices
Christoph A. Kleint, Armin Heinrich, Thomas Muehl, Joachim Schumann, and Michael Hecker

Electric and Thermoelectric Properties of Quantum Wires Based on Bismuth Semimetal and Its Alloys
Albina A. Nikolaeva, Pavel P. Bodiul, Dmitrii V. Gitsu, and Gheorgii Para

High-Z Lanthanum-Cerium Hexaborate Thin Films for Low-Temperature Applications
Armen Kuzanyan, George Badalyan, Sergey Harutyunyan, Ashot Gyulamiryan, Violetta Vartanyan, Silvia Petrosyan, Nicholas Giordano, Todd Jacobs, Kent Wood, Gilbert Fritz, Syed B. Qadri, James Horwitz, Huey-Dau Wu, Deborah Van Vechten, and Armen Gulian

THERMIIONS

Thermal Conductivity of Bi/Sb Superlattice
David W. Song, G. Chen, Sunglae Cho, Yunki Kim, and John B. Kerterson

Upper Limitation to the Performance of Single-Barrier Thermionic Emission Cooling
Marc D. Ulrich, Peter A. Barnes, and Cronin B. Vining

Umklapp Scattering and Heat Conductivity of Superlattices
Mikhail V. Simkin and Gerald D. Mahan
SKUTTERUDITES II

Partially-Filled Skutterudites: Optimizing the Thermoelectric Properties
George S. Nolas, Michael Kaeser, Roy T. Littleton IV, Terry M. Tritt, Heike Sellinschegg, David C. Johnson, and Elizabeth Nelson

Bulk Synthesis of Completely and Partially Sn Filled CoSb3 Using the Multilayer Repeat Method
Heike Sellinschegg, David C. Johnson, Michael Kaeser, Terry M. Tritt, George S. Nolas, and Elizabeth Nelson

The Influence of Ni on the Transport Properties of CoSb3
Ctirad Uher, Jeffrey S. Dyck, Wei Chen, Gregory P. Meisner, and Jihui Yang

Structural Defects in a Partially-Filled Skutterudite
Jennifer S. Harper and Ronald Gronsky

DEVICES, MEASUREMENTS, AND APPLICATIONS

Optimization of Bismuth Nanowire Arrays by Electrochemical Deposition
John H. Barkyoubm, Jack L. Price, Noel A. Guardala, Norris Lindsey, David L. Demske, Jagadish Sharma, Hyoung Ho Kang, and Lourdes Salamanca-Ribba

Evaluation of a Thermoelectric Device Utilizing Porous Medium
Hideyuki Yasuda, Itsuo Ohnaka, Yoichi Inada, and Kimitaka Nomura

Electrochemical Deposition of (Bi,Sb)2Te3 for Thermoelectric Microdevices
Jean-Pierre Fleurial, Jennifer A. Herman, G. Jeffrey Snyder, Margaret A. Ryan, Alexander Borshchevsky, and Chen-Kuo Huang

Transient Thermoelectric Cooling of Thin Film Devices
A. Ravi Kumar, Rong Gui Yang, Gang Chen, and Jean-Pierre Fleurial

* Invited Paper

x
P-Type (SiGe) Si Superlattice Cooler ................................................................. Z11.5
Xiaofeng Fan, Gehong Zeng, Edward Croke, Gerry Robinson,
Christopher J. LaBounty, Channing C. Ahn, Ali Shakouri,
and John E. Bowers

Progress in the Development of Segmented Thermoelectric
Unicouples at the Jet Propulsion Laboratory .............................................. Z11.6
Thierry Caillat, Jean-Pierre Fleurial, G. Jeffrey Snyder,
and Alexander Borshchevsky

CLATHRATES

Thermal Conductivity of Type-I and -II Clathrate Compounds ...................... Z13.1
George S. Nolas, Joshua L. Cohn, Michael Kaeser, and Terry M. Tritt

Framework Stoichiometry and Electrical Conductivity of Si-Ge
Based Structure-I Clathrates ........................................................................ Z13.2
Ganesh K. Ramachandran, Paul F. McMillan, Jianjun Dong,
Jan Gryko, and Otto F. Sankey

*Ultrasound Studies of Clathrate Thermoelectrics ...................................... Z13.3
Veerle M. Keppens, Brian C. Sales, David Mandrus,
Bryan C. Chakoumakos, and Christiane Laermans

Synthesis and Characterization of Large Single Crystals of
Silicon and Germanium Clathrate-II Compounds and a New
Tin Compound With Clathrate Layers ....................................................... Z13.5
Svilen Bobev and Slavi C. Sevov

THIN FILMS

Electrodeposition of Bi₂Te₃ Nanowire Composites ..................................... Z14.1
Amy L. Prieto, Melissa S. Sander, Angelica M. Stacy,
Ronald Gronsky, and Timothy Sands

Thermopower of Bi Nanowire Array Composites ....................................... Z14.2
Tito E. Huber, Michael J. Graf, Colby A. Foss, Jr.,
and Pierre Constant

* Invited Paper
PREFACE

Symposium Z, "Thermoelectric Materials 2000—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications," held April 24–27 at the 2000 MRS Spring Meeting in San Francisco, California, was the fourth in a series of MRS symposia which are specifically related to research in new thermoelectric materials [see MRS Symposium Proceedings Vol. 234 (1991), Vol. 478 (1997) and Vol. 545 (1999).] At this Meeting there were over 60 contributed oral presentations, 11 invited talks and 22 poster presentations. Some of the highlights of this Meeting were results presented by Ted Harmon of MIT Lincoln Labs on quantum dot nanostructures of PbTe materials. These materials appear to exhibit a substantial improvement over their bulk counterparts with a $ZT \approx 2$. The Kanatzidis group at Michigan State University presented an update on the CsBi$_4$Te$_6$ material since their announcement in Science Vol. 287, pp. 1024-7 (2000). In addition, George Nolas of Marlow Industries and Brian Sales of Oak Ridge National Laboratory presented results on a Yb partially filled skutterudite with $ZT > 1$ at 300 °C. There were also many interesting results in the clathrates, skutterudites, quasicrystals and novel chalcogenide materials systems as well as in III-V compounds for thermionic refrigeration. As in past symposia, both bulk and thin film thermoelectric materials research was well represented. Thermoelectric materials are used in a wide variety of applications related to small-scale solid state refrigeration or power generation.

Over the past thirty years, alloys based on the Bi$_2$Te$_3$ compounds (refrigeration) and Si$_1_x$Ge$_x$ compounds (power generation) have been extensively studied and optimized for their use as thermoelectric materials. Thermoelectric cooling is an environmentally "friendly" method of small-scale cooling in specific applications such as cooling computer chips, small beverage coolers, cooling laser diodes and infrared detectors. Another very important application of thermoelectric materials is in power generation for deep space probes such as in the Voyager and Cassini missions. Despite the extensive investigation of these traditional thermoelectric materials, there is still substantial room for improvement, and thus, entirely new classes of compounds will have to be investigated. Therefore, the focus of this symposium centers around the development of the next generation materials for small-scale refrigeration and power generation applications.

The essence of a good thermoelectric is given by the determination of the material's dimensionless figure of merit, $ZT = (\alpha^2 \sigma / \lambda)T$, where $\alpha$ is the Seebeck coefficient, $\sigma$ is the electrical conductivity, and $\lambda$ is the total thermal conductivity. The thermal conductivity consists of two parts, the electronic and the lattice thermal conductivity. Many of the papers presented in this proceedings revolve around either maximizing the numerator of $ZT$ called the power factor, $PF = \alpha^2 \sigma T$, or by minimizing the lattice thermal conductivity. As previously described by Glen Slack, a promising thermoelectric material should possess the thermal properties of a glass and the electronic properties of a crystal, i.e. a phonon-glass and electron-crystal (PGEC). This theme is quite prevalent in the many papers presented in this volume. The best thermoelectric materials have a value of $ZT \approx 1$, which has been an upper limit for more than 30 years, yet no theoretical or thermodynamic reason exists for why it cannot be larger. We believe that the future advances in thermoelectric applications will come through research in new materials, and that is why we have focused the symposium on research in new materials, instead of further optimization of established materials. There are currently many new methods of materials synthesis and much more rapid characterization of thermoelectric materials than were available 20 to 30 years ago. Many new researchers and new ideas are appearing in this field, which gives us much anticipation about future advances. It is the hope of the organizers of this symposium that these proceedings will provide a benchmark for the current state in the field of new thermoelectric materials at this time.

At the end of the symposium, there was a special session where program managers Wendy Fuller-Mora (NSF), Valarie Browning (DARPA), Jack Rowe (ARO), and Jerry Smith (DOE) discussed potential opportunities for thermoelectric research. This was followed by a short...
question and answer period. One distinction at this symposium was the large number of graduate student presentations, numbering over twenty. The symposium organizers were able to give three graduate student presentation awards and a poster award. The student awards for best papers and presentations were: Ganesh Ramachandran, Arizona State University (who also won one of the general MRS best paper awards), Marc Ulrich, Auburn University, and Melissa Lane, Northwestern University. The best student poster award went to Nishant Ghelani of Michigan State University. These awards were enabled by the support of High-Z Corporation, Marlow Industries, MMR Technologies and MRS. The organizers appreciate and acknowledge the support of these sponsors. Much of the research and the results which are presented in this volume were supported by DARPA, the Office of Naval Research and the Army Research Office. Their financial support is greatly appreciated and acknowledged. We also acknowledge the assistance of Marian Littleton and Lori McGowan of Clemson University in all phases of assistance concerning the symposium organization and subsequent proceedings. Their diligence and hard work both before and after the symposium allowed for the timely progress of the manuscripts and proceedings in preparation for publication of this volume.

Terry M. Tritt
George S. Nolas
Gerald D. Mahan
David Mandrus
Mercouri G. Kanatzidis

September 2000
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS


MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS


Prior Materials Research Society Symposium Proceedings available by contacting Materials Research Society

© in this web service Cambridge University Press