Nonlithographic and Lithographic Methods of Nanofabrication—From Ultralarge-Scale Integration to Photonics to Molecular Electronics
Nonlithographic and Lithographic Methods of Nanofabrication—From Ultralarge-Scale Integration to Photonics to Molecular Electronics

Symposium held November 26–December 1, 2000, Boston, Massachusetts, U.S.A.

EDITORS:

Lhadi Merhari
CERAMEC
Limoges, France

John A. Rogers
Lucent Technologies, Bell Laboratories
Murray Hill, New Jersey, U.S.A.

Alamgir Karim
National Institute of Standards and Technology
Gaithersburg, Maryland, U.S.A.

David J. Norris
NEC Research Institute
Princeton, New Jersey, U.S.A.

Younan Xia
University of Washington
Seattle, Washington, U.S.A.

Materials Research Society
Warrendale, Pennsylvania
Nonlithographic and Lithographic Methods of Nanofabrication—From Ultralarge-Scale Integration to Photonics to Molecular Electronics: Materials Research Society Symposium Proceedings: Volume 636

Editors: Lhadi Merhari, John A. Rogers, Alamgir Karim, David J. Norris and Younan Xia

Frontmatter

More information
CONTENTS

Preface ... xi

Acknowledgments ... xiii

Materials Research Society Symposium Proceedings xiv

ADVANCED TECHNIQUES AND
NOVEL MATERIALS FOR
NANOLITHOGRAPHY

*Status of Ion Projection Lithography .. D5.5
 Wilhelm H. Bruenger, Rainer Kaesmaier, Hans Loeschner,
 and Reinhard Springer

*High Resolution Resists for Next Generation Lithography:
The Nanocomposite Approach .. D6.5
 Kenneth E. Gonsalves, Hengpeng Wu, Yongqi Hu, and
 Lhadi Merhari

*Materials Challenges and Alternatives for Advanced
Photolithographic Patterning: From 193 to 157 nm and Beyond D5.2
 Elsa Reichmanis, Omkaram Nalamasu, and Francis M. Houlihan

*Fullerene Nanocomposite Resist for Nanolithography D6.4
 Tetsuyoshi Ishii, Atsushi Yokoo, Yuka Murata, and
 Kiyotaka Shigehara

*Self-Assembled Monolayers as High-Resolution Etch Masks and
Templates for Organic Molecular Assembly D6.6
 C.K. Harnett, A.G. Lopez, K.M. Satyalakshmi, Y-F. Chen,
 and H.G. Craighead

Relation Between Local Composition, Chemical Environment and
Phase Shift Behavior in Cr-Based Oxycarbonitride Thin Films D5.3
 J.R. Smith, P.C.J. Graat, D.A. Bonnell, and R.H. French

Demonstration of Arrays of Sub-Micrometer Solid-State Fresnel
Lenses for Electrons .. D5.7
 Y. Ito, A.L. Bleloch, and L.M. Brown

*Invited Paper
Fabricating Two-Dimensional Metal Nanocrystal Arrays Using Pulsed-Laser Deposition and Focused Ion-Beam Technologies

Precise Characterization of Resists and Thin Gate Dielectrics in the VUV Range for 157 nm Lithography

Pierre Boher, Patrick Evrard, Jean Philippe Piel, Christophe Defranoux, and Jean Louis Stehlé

Method for Measuring Profiles of Photoacid Patterns in Chemically Amplified Resists

Gilbert D. Feke, Robert D. Grober, Gerd Pohlers, and James F. Cameron

Nanolithography by Electron Beam Resist-Trimming Technique

Tatsuro Maeda, Kenichi Ishii, Eiichi Suzuki, Hiroshi Hiroshima, Tsutomu Iida, Yoshihumi Takanashi, Parhat Ahmet, Toyohiro Chikyow, and Hirohisa Taguchi

A FIB Micro-Sampling Technique and a Site-Specific TEM Specimen Preparation Method for Precision Materials Characterization

Toshie Yaguchi, Ryoichi Urao, Takeo Kamino, Tsuyoshi Otnishi, Takahito Hashimoto, Koaru Umemura, and Satoshi Tomimatsu

UNCONVENTIONAL APPROACHES TO NANOFABRICATION AND NANOPATTERNING

A Soft Lithographic Approach to the Fabrication of Single Crystalline Silicon Nanostructures with Well-Defined Dimensions and Shapes

Yadong Yin, Byron Gates, and Younan Xia

Electrochemical Synthesis of Multi-Material Nanowires as Building Blocks for Functional Nanostructures

David J. Pena, Baharak Razavi, Peter A. Smith, Jeremiah K. Mbindy, Michael J. Natan, Theresa S. Mayer, Thomas E. Mallouk, and Christine D. Keating

Nanofabrication Using Self-Assembled Alumina Templates

Oded Rabin, Paul R. Herz, Stephen B. Cronin, Yu-Ming Lin, Akintunde I. Akinwande, and Mildred S. Dresselhaus
Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials .. D4.8 Amanda J. Haes, Christy L. Haynes, and Richard P. Van Duyne

A New Assembling Method for Nano-Sized Particles Using an Electrified Pattern Drawn by a Focused Ion Beam ... D9.8 Hiroshi Fudouzi, Mikihiro Kobayashi, and Norio Shinya

Sub-100 nm Patterning of Aluminum Film by AFM Local Oxidation D9.29 Andrea Notargiacomo, Vittorio Foglietti, and Florestano Evangelisti

Submicron Patterned Anodic Oxidation of Aluminum Thin Films D9.49 Qiyu Huang, Whye-Kei Lye, David M. Longo, and Michael L. Reed

Electrodeposition of Three-Dimensionally Periodic Metal Mesures and Spheres .. D9.16 Lianbin Xu, Weilie L. Zhou, Ray H. Baughman, Anvar A. Zakhidov, and John B. Wiley

Magnetic Nanoparticle Arrays With Ultra-Uniform Length Electrodeposited in Highly Ordered Alumina Nanopores ("Alumite") D9.33 Robert M. Metzger, Ming Sun, Giovanni Zangari, and Mohammad Shamsuzzoha

Fabrication of Helically Perforated Thin Films ... D9.37 K.D. Harris, K.L. Westra, and M.J. Brett

Non-Lithographic Nanocolumn Fabrication With Application to Field Emitters .. D9.24 M.J. Colgan, D. Vick, and M.J. Brett

A New Simple Method for Fabrication of Fine Metal Patterns D9.19 Yasuyuki Hotta, Koji Asakawa, Shigeru Matakura, and Toshiro Hiraoka

Surface Patterning by Laser Induced Localized Chemistry D9.20 Aurélié Lachish-Zalait, David Zhaida, Eugenia Klein, and Michael Elbaum

SELF-ASSEMBLED SYSTEMS AND CHEMICAL ROUTES TO NANOSTRUCTURES

Three-Dimensional Electronic Surfaces ... D11.4
J.C. Sturm, P.I. Hsu, S.M. Miller, H. Gleskova, A. Darhuber,
M. Huang, S. Wagner, S. Troian, and Z. Suo

BASIC: Bio-Inspired Assembly of Semiconductor Integrated Circuits D11.7
R. Bashir, S. Lee, D. Guo, M. Pingle, D. Bergstrom, H.A. McNally,
and D. Janes

DNA Electrophoresis on Two-Dimensional Arrays of SiO₂ Beads D3.7
Young-Soo Seo, V.A. Samuilov, J. Sokolov, M. Rafailovich,
D. Gersappe, and B. Chu

Imaging Oriented Aggregates of Lyotropic Chromonic Mesogenic Dyes by Atomic Force Microscopy .. D11.8
Tod Schneider, Ashley Smith, and Oleg D. Lavrentovich

Monte Carlo Simulation of Amphiphile Self-Assembly During Dip Coating D1.2
Stephen E. Rankin, Anthony P. Malanoski, and Frank van Swol

Fabrication of Micro- and Nanostructures With Monodispersed Colloidal Spheres as the Active Components D9.15
Byron Gates, Brian Mayers, Zhi-Yuan Li, and Younan Xia

Novel Colloidal Assembly Methods for the Preparation of Core-Shell Composite Materials .. D9.17
Michael S. Fleming, Tarun K. Mandal, and David R. Walt

Low Pressure Band Tuning in Wurtzite CdSe Quantum Dots D9.46
R.W. Meulenberg, H.W. Offen, and G.F. Strouse

Chromium Oxide Sub-Micron Particles Fabricated by a Unique Technique: Laser-Induced Solution Deposition D9.51
Zhenchen Zhong

Spatially Controlled CdSe Nanocrystal Distribution in Phase Separated Polymer Blend Films ... D9.52
Harumi Asami, Soichiro Saita, Itaru Kamiya, and
Kenichi Yoshie

*Invited Paper
PHOTONIC, ELECTRONIC AND MAGNETIC PROPERTIES OF NANOSTRUCTURES

*FTIR Spectrometry as a Quality Control Method for Surface Engineering of Nanomaterials
Marie-Isabelle Baraton

*Quantum Coherence in Sub-10 nm Metal Wires
Douglas Natelson, Robert L. Willett, Kenneth W. West, and Loren N. Pfeiffer

Dynamic Light Scattering at CdSe Nanocrystals and CdSe Cluster-Molecules

Fabrication of Photonic Crystals Using Metal Clusters as Nuclei for Self-Formation of Etching Masks
Tetsuya Tada, Vladimir V. Poborchii, and Toshihiko Kanayama

Preparation and Optical Properties of Au-Shell Submicron Polystyrene Particles
Tianhao Ji, Yair Avny, and Dan Davidov

*Direct Fabrication of All-Inorganic Logic Elements and Microelectromechanical Systems From Nanoparticle Precursors
Colin Bulthaup, Eric Wilhelm, Brian Hubert, Brent Ridley, and Joe Jacobson

Low-Voltage Electron Transport in Self-Assembled Nanocrystal Arrays
C.T. Black, C.B. Murray, R.L. Sandstrom, and Shouheng Sun

Structure of Self-Assembled Fe and FePt Nanoparticle Arrays
S. Yamamuro, D. Farrell, K.D. Humfeld, and S.A. Majetich

Magnetic Properties of 100 nm-Period Nickel Nanowire Arrays Obtained From Ordered Porous-Alumina Templates

*Invited Paper
MOLECULAR DEVICES

*Electrochemical Testing of Potential Molecular Devices D7.4/JJ9.4
David W. Price, Jr., Shawn M. Dirk, Adam M. Rawlett, Jian Chen, W. Wang, Mark A. Reed, Angelica G. Zacarias, Jorge M. Seminario, and James M. Tour

Electrical Rectification by a Monolayer of Hexadecylquinolinium Tricyanomethanide Sandwiched Between Gold Electrodes D7.8/JJ9.8
Robert M. Metzger

New Method for First Principles of Electron Transport Through Nanoelectronic Devices D9.25
Mads Brandbyge, Kurt Stokbro, Jeremy Taylor, Jose-Luis Mozos, and Pablo Ordejón

A Potential Interconnection Method in Molecular Electronics D9.55
Meng Tao

Nanofabrication of Planar High Temperature Superconducting Josephson Junctions Using Focused Ion Beam Technology D5.8
Hong-Ying Zhai, Quark Y. Chen, Jiariu Liu, and Wei-Kan Chu

Surface Potentials of Conjugated Molecular on Metal Surfaces:
Measurements Using Electrostatic Force Microscopy and Calculations Using a Preliminary Physically-Based Model D9.38

Author Index

Subject Index

*Invited Paper
Future advances in information technology will have major socio-economic significance, and will rely heavily on technical and scientific progress in the field of nanotechnology. For example, nanofabrication should lead the semiconductor industry to mass-produce ULSI circuits having 100 nm (0.1 μm) resolution by 2006 as predicted by the Semiconductor Industry Association. The challenge of building systems for fabrication at this level imposes a formidable pressure on the lithographic processes in terms of dimension tolerances (10 nm or less) and positioning accuracy (1 nm or less), to quote only a few specifications. Due to the enormous costs of next generation lithographic machines, it is now felt that economically reasonable improvements will focus mainly on the materials science aspect of the lithographic processes: the development of advanced resists and, more generally, of smart materials. Nonlithographic methods for nanofabrication including self-assembly may lead the next revolution in electronics due to the major promises of molecular electronics and computing on molecular length scales. Here again, the materials science aspect of nonlithographic processes is critical as the organization and control of matter has to be done at the molecular level. This situation clearly suggests that further progress in nanotechnology and the future of information technology strongly depend on advances in materials science.

This volume contains a representative part of the papers that were presented during Symposium D, "Nonlithographic and Lithographic Methods for Nanofabrication—From Ultralarge-Scale Integration to Photonics to Molecular Electronics" held November 26-December 1 at the 2000 MRS Fall Meeting in Boston, Massachusetts. The large attendance at the tutorial and the 5-day long symposium clearly demonstrated intense interest in the topic of nanofabrication by the materials science community. The initial aim to gather, in a single forum, researchers with a wide range of expertise in microelectronics, optics, magnetism, polymer synthesis and materials science was accomplished. The reader will find in this volume a useful overview of the state of the art, both theoretical and experimental, as well as an indication of the future trends and remaining challenges in this technologically important field.

Contributions from key research institutions showed the advantages inherent to self-assembly of colloidal particles, self-assembly of block-copolymers, and template-directed synthesis for nanostructure fabrication. Also, significant papers suggested potentially important niche applications of soft lithography, nanoimprint lithography and dip-pen nanolithography.

For next generation lithographies (NGL) that appear likely to be implemented by the traditional semiconductor industry, outstanding contributions highlighted the necessity for developing exposure tools (extreme UV, electron and ion beams) and resists in parallel to produce sub-100 nm resolution integrated circuits. New advances on resists for NGL were emphasized while nanocomposite resists appeared as a breakthrough.

Molecular electronics was well addressed by outstanding contributions from key players, indicating a fast evolving field where nanofabrication techniques play a key role for actual device development. Photonic, electronic and magnetic properties of nanostructures were also reported, showing the industrial potential of micro and nanodevices.

Lhadi Merhari
John A. Rogers
Alamgir Karim
David J. Norris
Younan Xia

March 2001
ACKNOWLEDGMENTS

The editors wish to thank contributors to this volume and all the symposium chairs who directed and guided the discussions. Timely and conscientious efforts of the manuscript reviewers are greatly appreciated.

The organizers of the symposium are grateful for the generous support provided by the following organizations:

- CERAMEC France
- City Technologies Ltd
- ComSys GmbH
- Duke Scientific Corp.
- E-Ink Corp.
- Essilor International
- IBM T.J. Watson Research Center
- Lucent Technologies-Bell Labs
- M. Braun Inc.
- National Science Foundation
- NEC Research Institute, Inc.
- Nissei Sangyo America Ltd
- Peacock Laboratories Inc.
- STMicroelectronics
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

Volume 609

Volume 610

Volume 611

Volume 612

Volume 613

Volume 614

Volume 615

Volume 616

Volume 617

Volume 618

Volume 619

Volume 620

Volume 621

Volume 622

Volume 623
Nonlithographic and Lithographic Methods of Nanofabrication From Ultralarge-Scale Integration to Photonics to Molecular Electronics: Materials Research Society Symposia Proceedings: Volume 636
Editors: Lhadi Merhari, John A. Rogers, Alamgir Karim, David J. Norris and Younan Xia Frontmatter
More information