CONTENTS

Preface ... xxii

Materials Research Society Symposium Proceedings ... xxiii

NUCLEATION AND GROWTH

* In Situ Probing and Atomistic Simulation of a-Si:H Plasma Deposition
 Eray S. Aydil, Dimitrios Maroudas, Denise C. Marra, W.M.M. Kessels, Sumit Agarwal, Shyam
 Ramalingam, Saravanapriyan Srimanan, M.C.M. Van de Sanden, and Akihiro Takano
 ... A1.1

Effect of Strained Si-Si Bonds in Amorphous Silicon Incubation Layer on Microcrystalline
 Silicon Nucleation .. A1.2
 Hiroyuki Fujiwara, Michio Kondo, and Akihisa Matsuda

Quantitative Modeling of Nucleation Kinetics in Experiments for Poly-Si Growth on SiO2 by
 Hot-Wire Chemical Vapor Deposition .. A1.3
 Maribeth Swiatek, Jason K. Holt, and Harry A. Atwater

Thermodynamic Model of the Role of Hydrogen Dilution in Plasma Deposition of
 Microcrystalline Silicon .. A1.5
 J. Robertson

NOVEL CONCEPTS

Photovoltaics on Wire ... A2.1
 M. Rojahn, M. Rakhlin, and M.B. Schubert

HOT WIRE CVD I

Identification of Growth Precursors in Hot Wire CVD of Amorphous Silicon Films
 ... A3.1
 H.L. Duan, G.A. Zaharias, and Stacey F. Bent

Radical Species Distributions in Hot-Wire Chemical Vapor Deposition Probed Via
 Threshold Ionization Mass Spectrometry and Direct Simulation Monte Carlo Techniques
 ... A3.2
 Jason K. Holt, Maribeth Swiatek, David G. Goodwin, Harry A. Atwater, R.P. Muller, and
 W.A. Goddard III

* Invited Paper
Films and Devices Deposited by HWCVD at Ultra High Deposition Rates ... A3.3

Structural Characterization of SiF₄, SiH₄, and H₂ Hot-Wire-Grown Microcrystalline Silicon Thin Films With Large Grains .. A3.4

T-Site Trapped Molecular Hydrogen in Hot Wire a-Si:H ... A3.5
J. Herberg, P.A. Fedders, D.J. Leopold, R.E. Norberg, and R.E. Schropp

p-Type Window Layers for pin Solar Cells Entirely Fabricated by Hot-Wire CVD .. A3.6
Urban Weber, Markus Koob, Chandrachur Mukherjee, D. Chandrashekhar, Rajiv O. Dusane, and Bernd Schroeder

HIGH RATE DEPOSITION

Material Properties and Growth Process of Microcrystalline Silicon With Growth Rates in Excess of 1 nm/s .. A4.2
E.A.G. Hamers, A.H.M. Smets, C. Smit, J.P.M. Hoefnagels, W.M.M. Kessels, and M.C.M. van de Sanden

* High Rate Growth of Device Grade Silicon Thin Films for Solar Cells... A4.3
M. Kondo, S. Suzui, Y. Nasuno, and A. Matsuda

Evaluation of Microcrystalline Silicon Films Deposited by Ultrafast Thermal Plasma CVD ... A4.4
Yongkee Chae, Hiromasa Ohno, Keisuke Eguchi, and Toyonobu Yoshida

Properties of Large Grain-Size Poly-Si Films by Catalytic Chemical Sputtering .. A4.5
Atsushi Masuda, Koji Kamesaki, Akira Izumi, and Hideki Matsumura

GROWTH OF SILICON AND SILICON-ALLOY THIN FILMS

Optical Emission Spectroscopy of Germane Plasma Produced in an ECR Reactor ... A5.2
Matt deFreese, Vikram L. Dalal, and Julie Falter

*Invited Paper
Some Considerations Relating to Growth Chemistry of Amorphous Si and (Si,Ge) Films and Devices ... A5.3
Vikram L. Dalai

Phase Diagrams for the Optimization of rf Plasma Enhanced Chemical Vapor Deposition of a-Si:H: Variations in Plasma Power and Substrate Temperature ... A5.4
Andre S. Ferlauto, Randy J. Koval, Christopher R. Wronski, and Robert W. Collins

VHF Large Area Plasma Processing on Moving Substrates .. A5.5
J. Kuske, U. Stephan, R. Terasa, H. Brechtel, and A. Kottwitz

Cluster-Less Plasma CVD Reactor and Its Application to a-Si:H Film Deposition ... A5.6
Masaharu Shiratani, Kazunori Koga, and Yukio Watanabe

Ion-Assisted Sputter Deposition of Microcrystalline Silicon Films With Pulsed-DC Plasma Excitation ... A5.7
P. Reinig, F. Fenske, B. Selle, and W. Fuhs

The Properties of Low Hydrogen Silicon Thin Films Deposited by Mesh-Type PECVD .. A5.8
Se-won Ryu, Do-Hyun Kwon, Sung-Gye Park, and Hyoung-June Kim

Low-Temperature (630°C) Epitaxy of Silicon on Seeded Glass by Ion-Assisted Deposition .. A5.11
Armin G. Aberle, Nils-Peter Harder, and Stefan Oelting

CRYSTALLIZATION

Formation of Polycrystalline Silicon Films Using Electrical-Current-Induced Joule Heating .. A6.2
Nobuyuki Andoh, Hiroyuki Takahashi, and Toshiyuki Sameshima

Electrical Properties of Solid Phase Crystallized Silicon Films .. A6.3
Tadashi Watanabe, Hajime Watakabe, and Toshiyuki Sameshima

Super Poly-Si and Transistor Formed by Nickel-Induced-Lateral-Crystallization .. A6.4
C.F. Cheng, T.C. Leung, and M.C. Poon

A Novel Back-Reflecting UV-Assisted Metal-Induced Crystallization of Silicon on Glass ... A6.5
Leila Rezaee, Shamsoddin Mohajerzadeh, Ali Khakifirooz, Saber Haji, and Ebrahim Asl Soleimani
A New Field-Aided Germanium-Induced Lateral Crystallization of Silicon
Kianoush Naeli, Shamsoddin Mohajerzadeh, Ali Khakifirooz, Saber Haji, and Ebrahim A. Soleimani

Directional Field Aided Lateral Crystallization of Amorphous Silicon Thin Films
Marek A.T. Izmajlowicz, Neil A. Morrison, Andrew J. Flewitt, and William I. Milne

The Effects of Cu on Field Aided Lateral Crystallization (FALC) of Amorphous Silicon (a-Si) Films
Jae-Bok Lee, Chul-Ho Kim, Se-Youl Kwon, and Duck-Kyun Choi

CW Argon-Ion Laser Crystallization of a-Si:H Thin Films
A. Sunda-Meya, D. Gracin, J. Dutta, B. Vlahovic, and R.J. Nemanich

Electrical Properties and Defect States of Laser Crystallized Polycrystalline Silicon Films
Tadashi Watanabe, Nobuyuki Andoh, and Toshiyuki Sameshima

Excimer Laser Recrystallization of Selectively Floating a-Si Active Layer for Large-Grained Poly-Si Film
Cheon-Hong Kim, Juhn-Suk Yoo, In-Hyuk Song, and Min-Koo Han

HOT WIRE CVD II

The Effect of H₂ Dilution on Thin Film SiN Deposited by Hot Wire CVD Using SiH₄ and NH₃ Gas Mixtures

The Effect of Moderate Hydrogen Dilution on Stability and Structure of Amorphous Silicon Deposited by Hot-Wire CVD
Urban Weber and Bernd Schroeder

Large Red Shift of PL Peak Energy in High Growth Rate a-Si:H Prepared by Hot-Wire CVD
Daxing Han, Guozhen Yue, Jennifer Weinberg-Wolf, Jessica M. Owens, Yueqin Xu, and Qi Wang

High Quality Amorphous Silicon Germanium Alloy Solar Cells Made by Hot-Wire CVD at 10 Å/s
Qi Wang, Eugene Iwaniczko, Jeffrey Yang, Kenneth Lord, and Subhendu Guha
Properties of Nanocrystalline n-Type Silicon Films Produced by Hot Wire Plasma Assisted Technique

I. Ferreira, F. Braz Fernandes, P. Vilarinho, E. Fortunato, and R. Martins

SILICON-BASED ALLOYS

Stress Induced Lateral Concentration Profiles in SiGe Layers Grown on Si(001) Non-Planar Substrates

Anat Eshed, Robert Beserman, and Klauss Dettmer

Electronic and Optical Properties of High Quality Low Bandgap Amorphous (Ge, Si) Alloys

S.R. Sheng, R. Braunstein, and V.L. Dalal

Hydrogen Concentration Analysis in PECVD and RTCVD Silicon Nitride Thin Films and Its Impact on Device Performance

High-Rate Deposition of a-SiN_x:H Films for Photovoltaic Applications

W.M.M. Kessels, F.J.H. van Assche, J. Hong, J.D. Moschner, T. Lauinger, D.C. Schram, and M.C.M. van de Sanden

Ge Island Evolution During Growth, In Situ Anneal, and Si Capping in an Industrial CVD Reactor

Roger Loo, Philippe Meunier-Beillard, Didier Dentel, Michael Goryll, Danielle Vanhaeren, Lili Vescan, Hugo Bender, Matty Caymax, and Wilfried Vandervorst

STRUCTURAL PROPERTIES OF HETEROGENEOUS SILICON FILMS

Microstructure Characterization of Hydrogenated Amorphous Silicon Films by Rare Gas Effusion Studies

Wolfhard Beyer

Stability and Nanostructure of Heterogeneous Amorphous Silicon Thin-Film Synthesized Under High Chamber Pressure (500 to 2200 mTorr) Regime of RF PECVD

Nanostructured Silicon Films Produced by PECVD .. A9.6
R. Martins, H. Águas, V. Silva, I. Ferreira, A. Cabrita, and E. Fortunato

Effects of Hydrogen Dilution on a-Si:H and Its Solar Cells Studied
by Raman and Photoluminescence Spectroscopy .. A9.7
Guozhen Yue, Jessica M. Owens, Jennifer Weinberg-Wolf, Daxing Han, Jeffrey Yang, Kenneth Lord, Baojie Yan, and Subhendu Guha

Morphology, Phonon Confinement and Properties of a-Si:H Films A9.8
Valeri Ligatchev

DOPANTS AND IMPURITIES

Where Oxygen Donor Lives in Microcrystalline Silicon .. A10.1
Toshhiro Kamei, Takehito Wada, and Akihisa Matsuda

Relation Between Erbium Photoluminescence and Dangling-Bond
Defects in a-Si:H ... A10.4
Minoru Kumeda, Hiroshi Itoh, Norio Shitakata, and Tatsuo Shimizu

AMORPHOUS SILICON SOLAR CELLS

Towards Stabilized 10% Efficiency of Large-Area (> 5000cm²)
a-Si/a-SiGe Tandem Solar Cells Using High-Rate Deposition A11.1
Shingo Okamoto, Akira Terakawa, Eiji Maruyama, Wataru Shinohara, Makoto Tanaka, and Seiichi Kiyama

Higher Efficiency of n-i-p Solar Cells by Hot-Wire CVD at
Moderate Temperatures .. A11.2
Marieke K. van Veen and Ruud E.I. Schropp

Amorphous Silicon and Silicon Germanium Alloy Solar Cells
Deposited by VHF at High Rates .. A11.3
Jeffrey Yang, Baojie Yan, Jozef Smeets, and Subhendu Guha

Technology Transfer Challenges in the Manufacturing of a-Si
Tandem Solar Cells ... A11.4
D.E. Carlson, G. Ganguly, G. Lin, M. Gleaton, M. Bennett, and R.R. Arya

*Invited Paper
METASTABILITY I

Photocarrier Capture Properties of Light-Induced Defects in a-Si:H A12.1
Paul Stradins, Satoshi Shimizu, Michio Kondo, and Akihisa Matsuda

New Experiments on the Relationship Between Light-Induced Defects and Photoconductivity Degradation ... A12.2
Stephan Heck and Howard M. Branz

Contributions of D° and Non-D° Gap States to the Kinetics of Light Induced Degradation of Amorphous Silicon Under 1 sun Illumination ... A12.3
J. Pearce, X. Niu, R. Koval, G. Ganguly, D. Carlson,
R.W. Collins, and C.R. Wronski

Light-Induced Creation of Defects and Lifetime Distribution of Photoluminescence in a-Si:H Based Films ... A12.4
Chisato Ogihara, Hitoshi Takemura, and Kazuo Morigaki

Light-Induced Annealing of Deep Defects in Low Ge Fraction a-Si,Ge:H Alloys: Further Insights Into the Fundamentals of Light-Induced Degradation .. A12.5
J. David Cohen, Jennifer Heath, Kimon C. Palinginis,
Jeffrey C. Yang, and Subhendu Guha

Changes in Hydrogenated Amorphous Silicon Upon Extensive Light-Soaking at Elevated Temperature ... A12.6
N. Hata, C.M. Fortmann, and A. Matsuda

HYDROGEN AND METASTABILITY

* Diffusion and Solubility of Hydrogen in Amorphous and Microcrystalline Si:H Films ... A13.1
Wolfhard Beyer

* Forms of Hydrogen and Hydrogen Diffusion in Realistic Models of a-Si:H .. A13.2
P.A. Fedders

* Hydrogen Equilibration and Metastability in Amorphous Silicon A13.3
Howard M. Branz and S.B. Zhang

*Invited Paper
METASTABILITY II

Network Rebonding Model for Metastability in Amorphous Silicon .. A14.1
R. Biswas, B.C. Pan, and Y. Ye

Investigation of Light-Induced Defect Depth Profile in Hydrogenated Amorphous Silicon Films.......................... A14.2
S. Shimizu, P. Stradins, M. Kondo, and A. Matsuda

Illumination- and Annealing-Induced Changes in the Infrared and Raman Spectra of a-Si:H A14.3
L.-F. Arsenault, S. Lebib, E. Sacher, and A. Yelon

Is Interstitial Hydrogen Playing a Role in the Staebler-Wronski Effect? .. A14.4
C. Longeaud and D. Roy

The Staebler-Wronski Effect and 1/f Noise in Amorphous Silicon .. A14.5
T.J. Belich and J. Kakalios

Defect Creation by Electron Beam Irradiation in Amorphous Silicon Nitride Films Compared With That by Light Soaking .. A14.6
Tatsuo Shimizu, Yuji Kawashima, and Minoru Kumeda

MICROCRYSTALLINE SILICON SOLAR CELLS

Assessment of the Use of Microcrystalline Silicon Materials Grown at Rates Near 15 Å/s as i-Layer Material for Single and Multi-Junction Solar Cells .. A15.1
S.J. Jones, R. Crucet, R. Capangpangan, M. Izu, and A. Banerjee

Structural Properties of Microcrystalline Si Solar Cells .. A15.2
M. Luysberg, C. Scholten, L. Houben, R. Carius, F. Finger, and O. Vetterl

Improved Interface Between Front TCO and Microcrystalline Silicon p-i-n Solar Cells A15.3

Tailoring the Structure of Low-Temperature-Deposited Microcrystalline Silicon Films by Biasing the Substrate .. A15.4
Mario Birkholz, Burkhardt Selle, Walther Fuhs, and Don L. Williamson
* Microcrystalline Silicon Thin-Film Solar Cells Prepared at Low Temperature ... A15.5
 Y. Nasuno, M. Kondo, and A. Matsuda

Thin Film a-Si/poly-Si Multibandgap Tandem Solar Cells With Both Absorber Layers Deposited by Hot Wire CVD ... A15.6
 R.E.I. Schropp, C.H.M. Van Der Werf, M.K. Van Veen,
 P.A.T.T. Van Veenendaal, R. Jimenez Zambrano, Z. Hartman,
 J. Löffler, and J.K. Rath

TRANSPORT IN μc-Si

* Microscopic Aspects of Charge Transport in Hydrogenated Microcrystalline Silicon ... A16.1
 Antonin Fejfar, Tomáš Mates, Christian Koch, Bohuslav Rezek,
 Vladimir Svrcek, Petr Fojtík, Ha Stuchlíková, Jírí Stuchlík,
 and Jan Kocka

Carrier Transport in Ultra-Thin Nano/Polycrystalline Silicon Films and Nanowires ... A16.2
 Toshio Kamiya, Yong T. Tan, Yoshikazu Furuta,
 Hiroshi Mizuta, Zahid A.K. Durrani, and Haroon Ahmed

Improvement in Electrical Properties of Polycrystalline Silicon Films by the H2O Vapor Annealing Method .. A16.3
 Toshiyuki Sameshima, Katsumi Asada, Yoshiyuki Tsunoda,
 and Yoshiyasu Kaneko

Evolution of the Mobility Gap With Thickness in Hydrogen-Diluted Intrinsic Si:H Materials in the Phase Transition Region and Its Effect on p-i-n Solar Cell Characteristics A16.4
 R.J. Koval, J.M. Pearce, A.S. Ferlauto, R.W. Collins,
 and C.R. Wronski

Femtosecond Carrier Dynamics in Nanocrystalline Silicon Films:
The Effect of the Degree of Crystallinity .. A16.5
 K.E. Myers, Q. Wang, and S.L. Dexheimer

THIN FILM TRANSISTORS

P-Channel Polycrystalline Silicon Thin Film Transistors on Steel Foil Substrates ... A17.2
 Ming Wu and Sigurd Wagner

*Invited Paper
Towards an All-Hot-Wire TFT: Silicon Nitride and Amorphous Silicon Deposited by Hot-Wire Chemical Vapor Deposition................................. A17.3
B. Stannowski, M.K. van Veen, and R.E.I. Schropp

Jet-Printed Fabrication of a-Si:H Thin-Film Transistors and Arrays .. A17.4
W.S. Wong, S. Ready, R. Matusiak, S.D. White, J.-P. Lu, R. Lau, J. Ho, and R.A. Street

Nanocrystalline Silicon TFTs With 50 nm Thick Deposited Channel Layer, 10 cm²/Vs Electron Mobility and 10⁸ On/Off Current Ratio A17.5
Robert B. Min and Sigurd Wagner

SENSORS

Two-Dimensional Amorphous Silicon Color Sensor Array A18.1
F. Lemmi, M. Mulato, J. Ho, R. Lau, J.P. Lu, and R.A. Street

Design and Modeling of Optical Sensors in Multi-Channel Technology A18.2
D. Knipp, H. Stiebig, and P.G. Herzog

Mechanisms of Cross-Talk in Large Area a-Si:H Continuous Image Sensors .. A18.4
M. Mulato, J.P. Lu, S.E. Ready, K. Van Schuylenbergh, J. Ho, R. Lau, J.B. Boyce, and R.A. Street

Tailored Laser Scanned Photodiodes (LSP) for Image Recognition A18.5
M. Vieira, M. Fernandes, P. Louro, Y. Vygranenko, R. Schwarz, and M. Schubert

Piezoresistive Sensors on Plastic Substrates Using Doped Microcrystalline Silicon... A18.6
P. Alpuim, V. Chu, and J.P. Conde

METASTABILITY III

Model of Hydrogen-Mediated Metastable Changes in a Two-Domain Amorphous Silicon Network ... A19.1
Jonathan Baugh and Daxing Han

Defect Density Profiling in Light-Soaked and Annealed Hydrogenated Amorphous Silicon Solar Cells ... A19.2
Richard S. Crandall, Jeffrey Yang, and Subhendu Guha
Laplace-Transform Transient Photocurrent Spectroscopy as a Probe of Metastable Defect Distributions in Hydrogenated Amorphous Silicon
Mariana J. Gueorguieva, Charlie Main, and Steve Reynolds

Hydrogen Distributions and Model Lineshapes of ESR Signals of Dangling Bonds in a-Si:H
P.A. Fedders

Fast Light-Induced Change in Ellipsometry Spectra of Hydrogenated Amorphous Silicon Measured Through a Transparent Substrate Upon Bias Light Illumination
N. Hata, C.M. Fortmann, and A. Matsuda

Illumination Dependence of Microcrystalline PIN Diodes
Torsten Brammer, Franz Birmans, Mathias Krause, Helmut Stiebig, and Heribert Wagner

Electrical Stability of a-Si:H TFTs Fabricated at 150°C
H. Gleskova and S. Wagner

Structural Changes in Amorphous Silicon Annealed at Low Temperatures
Branko Pivac, Pavo Dubcek, Ognjen Milat, and Ivan Zulim

HYDROGENATION AND OXIDATION

Surface Derivatization of Amorphous Silicon by Grignard Reagents
Takashi Ehara and Arata Maruyama

Photoluminescence Study of Self-Limiting Oxidation in Nanocrystalline Silicon Quantum Dots
Kenta Arai, Junichi Omachi, Katsuhiko Nishiguchi, and Shunri Oda

THEORY AND COMPUTER MODELING

Vibrational Stretching Modes of the Si-H and Si-D Bonds in Amorphous Silicon Nitride
Shu-Ya Lin
DEFECTS AND DEFECT SPECTROSCOPY

Sensitization of the Holes Lifetime by the Addition of Dangling Bonds in a-Si:H .. A22.2
L.F. Fonseca, S.Z. Weisz, and I. Balberg

Orientation-Dependence of Low-Temperature Epitaxial Silicon Growth .. A22.3
Thomas A. Wagner, Lars Oberbeck, Melanie Nerding, Horst P. Strunk, and Ralf B. Bergmann

Ex Situ and In Situ Defect Density Measurements of a-Si:H by Means of the Cavity Ring Down Absorption Technique A22.4
A.H.M. Smets, J.H. van Helden, and M.C.M. van de Sanden

Study of Defects in Hydrogenated Amorphous Silicon by Constant Photocurrent Method and Positron Annihilation A22.5

Effect of Experimental Noise on Recovery of the Electronic Density of States From Transient Photocurrent Data A22.6
Steve Reynolds, Charlie Main, and Mariana J. Gueorguieva

STRUCTURAL AND ELECTRONIC PROPERTIES OF THIN SILICON FILMS

Properties of Silicon Films Deposited Under Argon Dilution A23.1

The Determination of Optoelectronic Properties of Microcrystalline and Amorphous Silicon Films ... A23.2
Marinus Kunst, Susanne von Aichberger, Wilhelm Thom, and Frank Wünsch

Structural and Optical Features of Nanocrystalline Silicon Films Prepared by PECVD and rf Magnetron Sputter Techniques A23.3
M.-B. Park and N.-H. Cho

Electronic Transport Study of High Deposition Rate HWCVD a-Si:H by the Microwave Photomixing Technique A23.4
S.R. Sheng, R. Braunstein, B.P. Nelson, and Y. Xu
Study of Electrical Properties of Microcrystalline Silicon Films
Using AC Measurements

Ely A.T. Dirani, Alexandre M. Nardes, Adnei M. Andrade, Fernando J. Fonseca, and Reginaldo Muccillo

Increasing the Dark Conductivity Activation Energy in Undoped Microcrystalline Silicon by Post-Growth Anneals

Jong-Hwan Yoon

Generation-Recombination Noise in Amorphous Semiconductors

Charlie Main, Steve Reynolds, and Rashad I. Badran

HETEROJUNCTIONS

Charge Carrier Transport in a-Si:H/c-Si Heterojunctions

Susanne von Aichberger, Frank Wünsch, and Marinus Kunst

Importance of Defect Density Near the p-i Interface for a-Si:H Solar Cell Performance

B.A. Korevaar, C. Smit, R.A.C.M.M. van Swaaij, D.C. Schram, and M.C.M. van de Sanden

Silicon Thin Film Deposition on Nano-Structured ZnO Substrates

R. Könkenkamp, V. Chu, J. Conde, and L. Dioczík

Optical Simulations of the Effects of Transparent Conducting Oxide Interface Layers on Amorphous Silicon Solar Cell Performance

Gelio M. Ferreira, Andre S. Ferlauto, Pablo I. Rovira, Chi Chen, Hien V. Nguyen, Christopher R. Wronski, and Robert W. Collins

AMORPHOUS AND MICROCRYSTALLINE SOLAR CELLS

Integrated Optical and Electrical Modeling of a-Si:H Based Solar Cells

Miro Zeman, René A.C.M.M. van Swaaij, Joost J.G. van den Heuvel, and Wim Metselaar

Annealing Kinetics of Amorphous Silicon Alloy Solar Cells Made at Various Deposition Rates

Baojie Yan, Jeffrey Yang, Kenneth Lord, and Subhendu Guha

Correlation Between Film and Cell Properties for DC Plasma Deposited Amorphous Silicon

Jennifer Heath, Suman B. Iyer, Yoram Lubianiker, J. David Cohen, and Gautam Ganguly
Effects of Low-Temperature Annealing on the Initial and Stabilized Performance of Amorphous Silicon Solar Cells .. A25.4
D. Carlson, G. Ganguly, and G. Lin

Microcrystalline Silicon Solar Cells Prepared by 13.56 MHz PECVD at High Growth Rates: Solar Cell and Material Properties .. A25.5

Guiding Principle to Develop Intrinsic Microcrystalline Silicon Absorber Layer for Solar Cell by Hot Wire CVD ... A25.6
A.R. Middya, U. Weber, C. Mukherjee, and B. Schroeder

A Novel Poly-Si Solar Cell Using Grain Boundary Etching Treatment and Transparent Conducting Oxide ... A25.7
Dong Gun Lim, Wook Jae Lee, and Junsin Yi

Preparation Temperature Effects in Microcrystalline Silicon Thin Film Solar Cells .. A25.8
O. Vetterl, A. Dasgupta, A. Lambertz, H. Stiebig, F. Finger, and H. Wagner

Solar Cell Performance Under Different Illumination Conditions ... A25.9
Christian Gemmer and Markus B. Schubert

Carrier Transport and Photogeneration in Large Area p-i-n Si/SiC Heterojunctions ... A25.10

Controlling the Lateral Photoeffect in a-Si:H Heterojuction Structures: The Influence of the Band Offset Analyzed Through a Numerical Simulation .. A25.11
A. Fantoni, M. Fernandes, P. Louro, R. Schwarz, and M. Vieira

Vikram L. Dalal and Jason T. Herrold

TFTs AND SENSORS

High Electron Mobility TFTs of Nanocrystalline Silicon Deposited at 150°C on Plastic Foil ... A26.1
I-Chun Cheng, Sigurd Wagner, Sanghoon Bae, and Stephen J. Fonash
Density of States in a-Si:H From SCLC and Its Application in Modeling a Vertical TFT... A26.2

Naser Sedghi and Bill Eccleston

Photocapacitance of Hydrogenated Amorphous Silicon Phototransistors... A26.3

D. Caputo, G. de Cesare, F. Lemmi, A. Nascetti, F. Palma, F. Roca, and M. Tucci

Electromechanical Properties of Amorphous and Microcrystalline Silicon Micromachined Structures... A26.4

J. Gaspar, M. Boucinha, V. Chu, and J.P. Conde

Microcrystalline Germanium Photodetectors ... A26.5

M. Krause, H. Stiebig, R. Carius, and H. Wagner

Hydrogenated Amorphous Silicon/ZnO Schottky Heterojunction for Position Sensitive Detectors .. A26.6

Porous Silicon Thin Film Gas Sensor.. A26.7

I. Ferreira, E. Fortunato, and R. Martins

AMORPHOUS-TO-MICROCRYSTALLINE TRANSITION

Hydrogen Diffusion During Amorphous Silicon Growth and Its Consequences for the Transition to Nanocrystalline Growth......................... A27.2

Richard S. Crandall and Jack Thiesen

Control of Medium Range Order in Amorphous Silicon Via Ion and Neutral Bombardment.. A27.3

Jennifer E. Gerbi, Paul M. Voyles, Michael M.J. Treacy, J. Murray Gibson, Wangchun Chen, Brent J. Heuser, and J.R. Abelson

* Proton NMR and Magnetic Susceptibility in a-Si:H ... A27.4

Jonathan Baugh, Daxing Han, Alfred Kleinhhammes, and Yue Wu

STRUCTURAL RELAXATION AND DIFFUSION

* Basic Mechanisms of Structural Relaxation and Diffusion in Amorphous Silicon ... A28.1

G.T. Barkema, Normand Mousseau, R.L.C. Vink, and Parthapratim Biswas

*Invited Paper
Determination of the Mobile-Hydrogen Charge State in Hydrogenated Amorphous Silicon

Brent P. Nelson, Yueqin Xu, Robert C. Reedy, Richard S. Crandall, A. Harv Mahan, and Howard M. Branz

Metastable Changes of the Electrical Conductivity in Microcrystalline Silicon

N.H. Nickel and M. Rakel

Evidence for Long-Range Hydrogen Motion in a-Si:H Under Room-Temperature Illumination Using Raman Scattering of Amorphous Tungsten Oxide Overlayer

Hyeonsik M. Cheong, Se-Hee Lee, Brent Nelson, Angelo Mascarenhas, and Sayten K. Deb