Luminescence and Luminescent Materials
Luminescence and Luminescent Materials

Symposium held April 17–19, 2001, San Francisco, California, U.S.A.

EDITORS:

Peter C. Schmidt
Technische Universität Darmstadt
Darmstadt, Germany

Kailash C. Mishra
OSRAM Sylvania, Inc.
Beverly, Massachusetts, U.S.A.

Baldassare Di Bartolo
Boston College
Chestnut Hill, Massachusetts, U.S.A.

Joanna McKittrick
University of California-San Diego
La Jolla, California, U.S.A.

A.M. Srivastava
General Electric R&D Corporation
Niskayuna, New York, U.S.A.
CONTENTS

Preface .. xi

Materials Research Society Symposium Proceedings .. xii

THEORY, MODELING AND LUMINESCENCE PHENOMENA

Electronic Structures and Nature of Host Excitation in Gallates .. G1.2

Advances in the Development of Quantum Splitting Phosphors .. G1.6

Development of an Organic Dye Solution for Laser Cooling by Anti-Stokes Fluorescence G1.7
Jarett L. Bartholomew, Peter A. DeBarber, Bauke Heeg, and Garry Rumbles

Computer Modeling of Luminescence in ABO₃ Perovskites ... G1.8
R.I. Eglitis, E.A. Kotomin, and G. Borstel

CHARACTERIZATION

* Analysis of Tungstates and Sesquioxides, Two of the Best Yb³⁺-Doped Laser Crystals According to Different Evaluations ... G2.1
Georges Boulon, Alain Brenier, Laetitia Laversenne, Yannick Guyot, Christelle Goutaudier, Marie-Thérèse Cohen-Adad, Gérard Métrat, and Noelle Muhlstein

High Pressure Studies of Sm²⁺-Doped Sol-Gel Glasses ... G2.5
Vilma C. Costa, Yongrong Shen, Kevin L. Bray, and Ana M.M. Santos

C.A. Paulson, A.B. Ellis, and T.F. Kuech

Abnormal Spectral Behavior of Trivalent Neodymium Ions in Potassium Yttrium Fluoride Crystals ... G2.8
Chunlai Yang and Baldassare Di Bartolo

*Invited Paper
Influence of Pressure on 5d→4f Emission Transitions of Ce³⁺ G2.9
Garry B. Cunningham, Yongrong Shen, Kevin L. Bray,
and Ulisses R. Rodriguez Mendoza

POSTER SESSION

Enhancement of Photoluminescence From Organic and Inorganic
Surface Passivated ZnS Quantum Dots ... G3.1
Hatim Mohamed El-Khair, Ling Xu, Minghai Li, Yi Ma,
Xinfan Huang, and Kunji Chen

Photoluminescence and Raman Spectroscopy Studies of H⁺ Ion
Implanted SOI Structures Formed by Hydrogen Ion Slicing G3.2
Vladimir P. Popov, Ida E. Tyschenko, Konstantin S. Zhuravlev,
and Ivan I. Morosov

PL Due to Discrete Gap Levels in Some Chalcogenide Glasses—
A Configurational Coordinate Diagram Illustration ... G3.4

Enhancement of Cathodoluminescent Characteristic From
CaTiO₃:Pr³⁺, by Ga³⁺ Addition ... G3.6
Jung-Woo Byun, Byung-Kyo Lee, Dong-Kuk Kim,
Seong-Gu Kang, Seung-Youl Kang, and Kyung-Sooh Suh

Morphology and Cathodoluminescence of Li-Doped SrTiO₃:Pr³⁺,Ga³⁺,
A Red Phosphor Operating at Low Voltages .. G3.7
Jin Young Kim, Duk Young Jeon, Seong-Gu Kang,
Seung-Youl Kang, and Kyung-Sooh Suh

Amorphous Nitride Alloys as Hosts for Rare-Earth Luminescent Ions............... G3.8
M.L. Caldwell, M.E. Little, C.M. Spalding, M.E. Kordesch,
and H.H. Richardson

Divalent and Trivalent Europium Doped Alumina Waveguides
Elaborated by Pulsed Laser Deposition ... G3.10
Anne Minardi, Claudine Garapon, Jacques Mugnier,
and Corinne Champeaux

Electrical and Optical Studies of the Organic Thin Film Devices
Produced by Cluster Beam Deposition Methods .. G3.12
J.Y. Kim, E.S. Kim, and J.-H. Choi

Polygermyne: Germanium Sheet Polymers With Efficient
Near-Infrared Luminescence .. G3.13
 Günther Vogg, Martin S. Brandt, Lex J.-P. Meyer,
Martin Stutzmann, Zoltán Hajnal, Bernadett Szűcs,
and Thomas Frauenheim
NANOCRYSTALLINE MATERIALS

Luminescence of Lu$_2$O$_3$:Tm$^{3+}$ Nanoparticles .. G4.4
Celso de Mello Donega, Eugeniusz Zych, and Andries Meijerink

Synthesis and Luminescence Properties of Colloidal Lanthanide
Doped YVO$_4$.. G4.5
Arnaud Huignard, Thierry Gacoin, Frédéric Chaput,
Jean-Pierre Boilot, Patrick Aschenhoug, and Bruno Viana

Luminescence of Nanocrystalline ZnS:Pb$^{2+}$... G4.7
Ageeth A. Bol and Andries Meijerink

Luminescence of Doped Nanocrystalline ZnSe ... G4.8
J.F. Suyver, S.F. Wuister, T. van der Beek, J.J. Kelly,
and A. Meijerink

Pressure Tuning Spectroscopy of Mn$^{2+}$ in Bulk and
Nanocrystalline Sulfide Semiconductors ... G4.9
Randy J. Smith, Yongrong Shen, and Kevin L. Bray

SYNTHESIS AND PROCESSING

Cerium Doped Garnet Phosphors for Application in White
GaN-Based LEDs ... G5.1
Jennifer L. Wu, Steven P. Denbaars, Vojislav Srdanov,
and Henry Weinberg

Structural and Optical Properties of ZnS:Mn Films Grown by
Pulsed Laser Deposition ... G5.2
K.M. Yeung, S.G. Lu, C.L. Mak, and K.H. Wong

Red Emitting Electroluminescent Devices Using Ga$_2$O$_3$ Phosphor
Thin Films Prepared by Sol-Gel Process .. G5.3
Tadatsugu Minami, Tetsuya Shirai, and Toshihiro Miyata

Novel Fluorescent Labels Prepared by Layer-by-Layer Assembly
on Colloids for Biodetection Systems .. G5.5
Wenjun Yang, Dieter Trau, Reinhard Renneberg, Nai-Teng Yu,
and Frank Caruso

Synthesis and Optical Characteristics of ZnGa$_2$O$_4$:$S$$_2$:Mn$^{2+}$ G5.8
J.S. Kim, H.L. Park, and G.C. Kim

Blue Room-Temperature Photoluminescence of AlN Films,
Prepared by RF Magnetron Sputtering ... G5.11
V. Ligatchev, S.F. Yoon, J. Ahn, Q. Zhang, Rusli, K. Chew,
and S. Zhgoon
QUANTUM WELLS AND QUANTUM DOTS

Nanocrystal Quantum Dots: Building Blocks for Tunable Optical Amplifiers and Lasers ... G6.1
Jennifer A. Hollingsworth, Alexander A. Mikhailovsky,
Anton Malko, Victor I. Klimov, Catherine A. Leatherdale,
Hans-J. Eisler, and Moungi G. Bawendi

Excited State Relaxation Mechanisms in InP Colloidal Quantum Dots G6.3
Garry Rumbles, Don Selmar, Randy E. Ellingson,
Jeff Blackburn, Pingrong Yu, Barton B. Smith, Olga I. Micic,
and Arthur J. Nozik

Photoluminescence of Multi-Layer GeSi Dots Grown on Si (001) G6.4
J. Wan, Y.H. Luo, G.L. Jin, Z.M. Jiang, J.L. Liu, X.Z. Liao,
J. Zou, and Kang L. Wang

Chemical Mapping of Indium Rich Quantum Dots in InGaN/GaN Quantum Wells ... G6.7
N. Sharma, H.K. Cho, J.Y. Lee, and C.J. Humphreys

InGaAs-InP Quantum Wire Stark Effect Modulators: Effect of Wire Width in the Optimization of Changes in Excitonic Absorption and Index of Refraction .. G6.9
M. Xu, W. Huang, and F. Jain

DEVICES AND DEVICE APPLICATIONS

* Color Centers in Magnesium Doped Polycrystalline Alumina G7.1
L.R. Brock, K.C. Mishra, Madis Raukas, Walter P. Lapatovich,
and George C. Wei

Long-Term Cathodoluminescent Characterization of Thin-Film Oxide Phosphors in a Wide Range of Electron Excitation Densities........ G7.4
Vyacheslav D. Bondar, Thomas F. Felter, Charles E. Hunt,
Yuri G. Dubov, and Andrei G. Chakhovski

Optical and Electrical Properties of Cr-SiO Thin Films for Flat Panel Displays ... G7.5
Richard Wood, Peter Hofstra, and David Johnson

Low-Temperature Technology and Physical Processes in Green Thin-Film Phosphor Zn2GeO4-Mn.. G7.6
V. Bondar, S. Popovich, T. Felter, and J. Wager

*Invited Paper
Strong Ultraviolet Electroluminescence From Porous Silicon
Light-Emitting Diodes .. G7.10
H.L. Tam, J. Yuan, K.F. Li, W.K. Wong, and K.W. Cheah

Author Index

Subject Index
PREFACE

This volume contains papers from Symposium G, "Luminescence and Luminescent Materials," held April 17–19 at the 2001 MRS Spring Meeting in San Francisco, California. The symposium comprised seven sessions, six of them dedicated to the presentation of papers and one to posters. The participation and the attendance were very good, pointing to the continuous interest in luminescence phenomena.

The papers that appear in this volume include both invited and solicited papers from various countries on different aspects of luminescence. The main themes ranged from theory and modeling, characterization of luminescent materials, systems with confined structures such as nano-crystallites and quantum wells and dots, to synthesis and devices.

The great interest of the participants in the subject of our symposium reinforces our belief that luminescence is presently and will continue to be a challenging field of research in materials science, solid state physics and chemistry. Recent progress in opto-electronic and display technology will drive this field in the search for new luminescent materials. Demands on new procedures for synthesis, and understanding underlying luminescence processes in these materials will create new opportunities for both fundamental and applied research in luminescence. We sincerely hope that this volume will contribute to furthering our knowledge and interest in this area.

The editors would like to thank the individual contributors, and the referees whose contributions to the quality of this volume cannot be overstated. We also would like to thank Dr. M. Stephan for his assistance in editing this volume.

Peter C. Schmidt
Kailash C. Mishra
Baldassare Di Bartolo
Joanna McKittrick
A.M. Srivastava

May 2001
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS
