Thermoelectric Materials 2001—
Research and Applications
Thermoelectric Materials 2001—
Research and Applications

Symposium held November 26–29, 2001, Boston, Massachusetts, U.S.A.

EDITORS:

George S. Nolas
University of South Florida
Tampa, Florida, U.S.A.

David C. Johnson
University of Oregon
Eugene, Oregon, U.S.A.

David G. Mandrus
Oak Ridge National Laboratory
Oak Ridge, Tennessee, U.S.A.

Materials Research Society
Warrendale, Pennsylvania
CONTENTS

Preface ... xiii

Materials Research Society Symposium Proceedings ... xv

GUIDANCE TO ADVANCED TE RESEARCH
* Overview of Various Strategies and Promising New Bulk Materials for Potential Thermoelectric Applications................................. 3
 Terry M. Tritt
* Theoretical Considerations for Finding New Thermoelectric Materials ... 15
 David J. Singh

Thermodynamic Calculations in New Thermoelectric Materials:
Application to Processes ... 23
 J.C. Tedenac, M.C. Record, and V. Izard

SKUTTERUDITES I

Thermoelectric Properties of Eu-doped CoSb3 .. 31
 G. A. Lamberton Jr., R.H. Tedstrom, Terry M. Tritt, and G.S. Nolas
* High Pressure Synthesis of New Filled Skutterudites .. 37
 Hirotsgu Takizawa, Ken-ichi Okazaki, Kyota Uheda, Tadashi Endo, and George S. Nolas

Electronic Structure and Thermoelectric Properties of Ytterbium-Filled Skutterudites .. 49
 Hiroaki Anno, Kazuhiro Ashida, Kakuei Matsubara, George S. Nolas, Koji Akai, Mitsuru Matsuura, and Jiro Nagao

Synthesis and Thermoelectric Properties of CoP3 .. 55
 Virgil B. Shields and Thierry Caillat

NEW MATERIALS, APPROACHES AND MEASUREMENTS I

Novel Thermal Transport in Stable Binary Cd57Yb Quasicrystals 65
 A.L. Pope, T.M. Tritt, R. Gagnon, and J. Strom-Olsen

*Invited Paper
Cross-Plane Thermoelectric Properties in Si/Ge Superlattices.......................... 71
Bao Yang, Jian L. Liu, Kang L. Wang, and Gang Chen

Doping and Alloying Trends In New Thermoelectric Materials.......................... 77
Sim Loo, Sangeeta Lal, Theodora Kyratsi, Duck-Young Chung,
Kuei-Fang Hsu, Mercouri G. Kanatzidis, and Timothy P. Hogan

Commercial Apparatus for Measuring Thermal Transport Properties From 1.9 to 390 Kelvin.. 85
N.R. Dilley, R.C. Black, L. Montes, A. Wilson, and
M.B. Simmonds

CLATHRATES I

Pressure Effect of Seebeck Coefficient for Zinc Doped Tin
Clathrates... 93
F. Chen, K.L. Stokes, and G.S. Nolas

CHALCOGENIDES I

* Search for New Thermoelectric Materials Through
Exploratory Solid State Chemistry: The Quaternary Phases
A$_{1-x}$M$_{2-2x}$Bi$_{1+x}$Se$_{14}$, A$_{1-x}$M$_{2-x}$Bi$_{11-2x}$Se$_{20}$, A$_{1-x}$M$_{3-x}$Bi$_{11-2x}$Se$_{21}$ and
A$_{1-x}$M$_{5-x}$Bi$_{11-2x}$Se$_{22}$ (A = K, Rb, Cs, M = Sn, Pb) and the
Homologous Series A$_m$[M$_6$Se$_8$]$_m$[M$_{5+n}$Se$_{9+n}$]... 101
Antje Mrotzek, Tim Hogan, and Mercouri G. Kanatzidis

Electrical Transport Properties of Rare Earth Doped
Pentatellurides.. 113
Nathan D. Lowhorn, Terry M. Tritt, R.T. Littleton IV,
Edward E. Abbott, and J.W. Kolis

DEVICES I

Thermoelectric Module for Low Temperature Applications.......................... 121
Sangeeta Lal, Sim Loo, Duck-Young Chung, Theodora Kyratsi,
Mercouri G. Kanatzidis, Charles Cauchy, and Timothy P. Hogan

Conservation of Lateral Momentum in Heterostructure
Integrated Thermionic Coolers... 131
Daryoosh Vashaeae and Ali Shakouri

*Invited Paper
High Cooling Power Density of SiGe/Si Superlattice Microcoolers

Gehong Zeng, Xiaofeng Fan, Chris LaBounty, John E. Bowers, Edward Croke, James Christofferson, Daryoosh Vashaee, Yan Zhang, and Ali Shakouri

NEW MATERIALS, APPROACHES AND MEASUREMENTS II

Reductions in the Lattice Thermal Conductivity of Ball-Milled and Shock Compacted TiNiSn$_1$Sb$_5$ Half-Heusler Alloys

* When Does a Crystal Conduct Heat Like a Glass?

B.C. Sales, B.C. Chakoumakos, V. Keppens, R. Jin, D. Mandrus, and J.R. Thompson

Thermal and Electrical Properties of Czochralski Grown GeSi Single Crystals

Ichiro Yonenaga, Takaya Akashi, and Takashi Goto

TE MATERIALS AND DEVICE R&D

Thermoelectric Structural Composites and Thermocouples Using Them

Shoukai Wang, Sihai Wen, Victor H. Guerrero, and D.D.L. Chung

Microstructure and Electrical Properties of PbTe Based Films Prepared by Pulsed Laser Deposition

Anne Dauscher, Bertrand Lenoir, Alexandre Jacquot, Christine Bellouard, and Maria Dinescu

Microstructure and Thermoelectric Properties of p-Type Bi$_6$Sb$_{1.5}$Te$_3$ and n-Type Bi$_2$Te$_2$Se$_{0.5}$ Films Deposited by Pulsed Laser Ablation

Raghuvare S. Makala, K. Jagannadham, B.C. Sales, and Hsin Wang

Discrete State Simulation of Electrical Conductivity and the Peltier Effect for Arbitrary Band Structures

Peter P.F. Radkowski III and Timothy D. Sands

Defect Formation in Boron Carbide—An Ab Initio Electronic Structure Study

Jun Wang and D.S. Marshall

*Invited Paper
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Boron-Rich Metal Borides and Their Thermoelectric Properties</td>
<td>209</td>
</tr>
<tr>
<td>Masatoshi Takeda, Ferrer Domingo, Takahiro Miura, and Tadahiro Fukuda</td>
<td></td>
</tr>
<tr>
<td>The Fabrication and Thermoelectric Properties of Amorphous Si-Ge-Au Bulk Samples</td>
<td>215</td>
</tr>
<tr>
<td>Sang Min Lee, Yoichi Okamoto, Toshio Kawahara, and Jun Morimoto</td>
<td></td>
</tr>
<tr>
<td>High-Temperature Electrical Transport Properties of Eu and Yb-Doped Skutterudites</td>
<td>221</td>
</tr>
<tr>
<td>R.H. Tedstrom, G.A. Lamberton Jr., Terry M. Tritt, and G.S. Nolas</td>
<td></td>
</tr>
<tr>
<td>Annealing Studies of Re Doped AlPdMn Quasicrystals</td>
<td>227</td>
</tr>
<tr>
<td>Donny W. Winkler, Terry M. Tritt, Robert Gagnon, and J. Strom-Olsen</td>
<td></td>
</tr>
<tr>
<td>Investigation of i-AlCuFe Quasicrystals and Their (\alpha) and (\beta) Approximants as Thermoelectric Materials</td>
<td>233</td>
</tr>
<tr>
<td>Microstructural Evolution of La-Doped SiB(_6) High-Temperature Thermoelectric Material During a Spark Plasma Sintering</td>
<td>239</td>
</tr>
<tr>
<td>D.W. Lee, J.H. Won, K.H. Kim, J. Matsushita, and K.B. Shim</td>
<td></td>
</tr>
<tr>
<td>Thermoelectric Properties of PbSe Epitaxial Thin Films and PbSe/EuS Heterostructures</td>
<td>245</td>
</tr>
<tr>
<td>Mildred S. Dresselhaus, Gene Dresselhaus, Elena I. Rogacheva, Tatyana V. Tavrina, Sergey N. Grigorov, Konstantin A. Nasedkin, Valentine V. Volobuev, and Alexander Yu. Sipatov</td>
<td></td>
</tr>
<tr>
<td>Temperature and Thickness Dependences of Thermoelectric Properties of PbS/EuS Bilayers</td>
<td>251</td>
</tr>
<tr>
<td>Thermoelectric Nanowires by Electrochemical Deposition</td>
<td>257</td>
</tr>
<tr>
<td>Oded Rabin, Yu-Ming Lin, Stephen B. Cronin, and Mildred S. Dresselhaus</td>
<td></td>
</tr>
<tr>
<td>Thermoelectric Properties of Bi-Sb-Te-X Compounds Prepared by MA-PDS Method</td>
<td>263</td>
</tr>
<tr>
<td>Yong-Ho Park and Xue-Dong Liu</td>
<td></td>
</tr>
</tbody>
</table>
Structure and Thermoelectric Properties of New Layered Compounds in the Quaternary System Cs-Pb-Bi-Te ... 269
Kuei-Fang Hsu, Duck-Young Chung, Sangeeta Lal, Tim Hogan, and Mercouri G. Kanatzidis

The Hall Carrier Mobility of AgBiTe$_2$-Ag$_2$Te Composite .. 275
T. Sakakibara, Y. Takigawa, and K. Kurosawa

Geometric Effects on the Transient Cooling of Thermoelectric Coolers .. 281
Ronggui Yang, Gang Chen, G. Jeffrey Snyder, and Jean-Pierre Fleuriel

Classical Size Effect on In-Plane Thermoelectric Transport at Low Dimension .. 287
W.L. Liu and G. Chen

Growth of PbTe Films by Magnetron Sputtering .. 295
A. Jdanov, J. Pellegr, Z. Dashevsky, and R. Shnec

Experimental Thermopower of Quantum Wires .. 301
M.V. Vedernikov, O.N. Uryupin, B.M. Goltsman, Yu. V. Ivanov, and Yu. A. Kumzerov

V. Izard, M.C. Record, J. Haines, and J.C. Tedenac

Formation, Crystal Structure and Physical Properties of Novel Thermoelectric Skutterudites: Eu$_3$Fe$_4$Ni$_x$Sb$_{12}$... 313
Andriy Grytsiv, Peter Rogl, Stefan Berger, Christoph Paul, Ernst Bauer, Claude Godart, Adriana Saccone, Ricardo Ferro, and Darek Kaczorowski

Enhancement of Thermal to Electrical Energy Conversion With Thermal Diodes 319
P.L. Hagelstein and Y. Kuchero

SKUTTERUDITES II

* The Performance of a Segmented Thermoelectric Converter Using Yb-Based Filled Skutterudites and Bi$_2$Te$_3$-Based Materials 327
Kakuei Matsubara

Electronic Structure and Thermoelectric Property of Skutterudite CoSb$_3$.. 339
Kenji Koga, Koji Akai, Kazunori Oshiro, and Mitsuru Matsuura

*Invited Paper
NANOWIRES

* Thermoelectric Potential of Bi and Bi$_{1-x}$Sb$_x$ Nanowire Arrays ... 347
 M.S. Dresselhaus, Y.-M. Lin, O. Rabin, S.B. Cronin,
 M.R. Black, and J.Y. Ying

Synthesis and Properties of Lead Selenide Nanocrystal Solids ... 359
 Feng Chen, Kevin L. Stokes, Weili Zhou, Jiye Fang, and
 Christopher B. Murray

Pattern Shape-Controlled Self-Assembly of Bi$_{0.90}$Sb$_{0.10}$
Nanocrystallites ... 365
 Jiye Fang, Kevin L. Stokes, Jibao He, Weili L. Zhou, and
 Charles J. O’Connor

Thermoelectric Transport Properties of Individual Bismuth
Nanowires .. 371
 Stephen B. Cronin, Yu-Ming Lin, Oded Rabin, Marcie R. Black,
 Gene Dresselhaus, and Mildred S. Dresselhaus

Thermoelectric Properties of Bi$_{1-x}$Sb$_x$ Nanowire Arrays ... 377
 Yu-Ming Lin, Stephen B. Cronin, Oded Rabin, Jackie Y. Ying,
 and Mildred S. Dresselhaus

DEVICES II

Thin Film Dispenser Cathodes for Thermionic Micro-Devices ... 385
 Kevin R. Zavadil and Donald B. King

OXIDES

Effects of Cation Substitution on the Thermoelectric Properties in
Ca-Co-O .. 393
 Ichiro Matsubara, Ryoji Funahashi, Masahiro Shikano,
 Kei Sasaki, and Hiroyuki Enomoto

Thermoelectric Properties of Cd$_{2x}$A$_x$TeO$_6$ (A = In$^{3+}$, La$^{3+}$ and
Bi$^{3+}$) Ceramics ... 399
 Weiling Luan, Yue Jin Shan, Mitsuru Itoh, and Hideo Imoto

Large Thermopower in Metallic Misfit Cobalt Oxides:
Improvement by Cationic Substitutions .. 405
 S. Hébert, L.B. Wang, A. Maignan, D. Pelloquin, M. Hervieu,
 and B. Raveau

*Invited Paper

x
CHALCOGENIDES II

Electronic Structure of K$_2$Bi$_8$Se$_{13}$... 413
Daniel I. Bilec, Paul Larson, S.D. Mahanti, and M.G. Kanatzidis

Thermoelectric Properties of K$_2$Bi$_{8-x}$Sb$_x$Se$_{13}$ Solid Solutions and Se Doping.. 419
Theodora Kyratsi, Jeffrey S. Dyck, Wei Chen,
Duck-Young Chung, Citrad Uher, Konstantinos M. Paraskevopoulos, and Mercouri G. Kanatzidis

Thermomechanical Characterization of Bismuth Telluride Based Thermoelectric Materials ... 425
Witold Brostow, Kevin P. Menard, and John B. White

Initial Assessment of the Thermoelectric Properties for the Mixed System K$_2$Rb$_x$Bi$_8$Se$_{13}$... 431
John R. Ireland, Theodora Kyratsi, Mercouri G. Kanatzidis, and C.R. Kannewurf

CLATHRATES II

133Cs and 23Na NMR Studies of Cs$_8$Na$_4$Ge$_{36}$ Clathrates .. 439
R.F. Marzke, G.S. Nolas, and J. Gryko

Nuclear Density Analysis in Solids: The Case of Ba$_6$Ga$_{16}$Si$_{30}$... 445
B.B. Iversen, A. Bentien, A.E.C. Palmqvist, D. Bryan,
G.D. Stucky, A.J. Schultz, and R.W. Hennings

Multinuclear NMR and Powder X-ray Diffraction Studies of Si and Sn Clathrates of Alkali Metals: Vacancies, Disorder and Knight Shifts... 451
Michael J. Ferguson, Igor L. Moudrakovski, Christopher I. Ratcliffe, and John S. Tse

Molecular-Dynamics Studies on Solid Phase Epitaxy of Guess-Free Silicon Clathrates ... 457
Shinji Munetoh, Koji Moriguchi, Teruaki Motooka, and Kazuhito Kamei

Author Index ... 463

Subject Index ... 467
This Symposium G, "Thermoelectric Materials 2001—Research and Applications," held November 26–29 at the 2001 MRS Fall Meeting in Boston, Massachusetts, was the fifth in a series of thermoelectric materials research symposia specifically related to research in new thermoelectric materials [see MRS Proceedings Vol. 234 (1991), Vol. 478 (1997), Vol. 545 (1999) and Vol. 626 (2001)]. In this symposium there were 88 contributing presentations, including 9 invited talks and 33 poster presentations. Based on results presented at this symposium it is apparent that there is acceleration in the pace of innovation in thermoelectrics research, as well as materials and device improvements. Some of the highlights of this meeting were results on superlattices by Rama Venkatasubramanian of the Research Triangle Institute who showed a $ZT = 2.4$ at room temperature in p-type Bi$_2$Te$_3$/Sb$_2$Te$_3$ superlattice thermoelectrics. This represents a greater than two-fold improvement in ZT as compared to the best materials presently in use. For n-type superlattices, $ZT = 1.2$ at room temperature were achieved. In addition, preliminary results on p-n couple devices from these superlattices indicate fast-acting spot cooling in addition to improved performance. This work recently appeared in Nature Vol. 413, 597-602 (2001). David Singh of the Naval Research Laboratory presented theoretical insights for improvements in compounds with the skutterudite crystal structure, a material system that continues to grow in interest. He showed how fully filled skutterudites should have higher mobilities due to the reduction of disorder from vacancies. Millic Dreselhaus of the Massachusetts Institute of Technology (MIT) presented band structure and transport properties of Bi$_{1-x}$Sb$_x$ nanowires. By varying the Sb concentration and the wire diameter, ZT can be optimized in these nanowires. Peter Hagelstein (MIT) and Yan Kucherov of Eneco Inc. presented work showing the development of an improved device for waste heat power generation. This work was announced prior to the conference and reported in the Technology section of the November 27, 2001 New York Times.

There were also a large number of graduate student presentations. This continues to be a focus of our symposium, emphasizing the strong interest from our future scientists in this field of materials research. The symposium organizers were able to give two graduate student presentation awards and a poster award. These students were Nathan Lowhorn of Clemson University, John Ireland of Northwestern University, and Oded Rabin of Massachusetts Institute of Technology.

Thermoelectric cooling is a particularly advantageous method of small-scale refrigeration for specific applications such as cooling of electrical components, for example laser diodes and infrared detectors. Another very important application is that of power generation from waste heat. Despite the extensive investigation of traditional thermoelectric materials (alloys based on Bi$_2$Te$_3$ for refrigeration and Si$_{1-x}$Ge$_x$ for power generation) there is still substantial room for improvement, and thus, entirely new classes of compounds will have to be investigated. This symposium focused on these new materials as well as developments in device engineering.

The essence of a good thermoelectric is given by the determination of the material's figure of merit, $Z = S^2\sigma/\kappa$, where S is the Seebeck coefficient, σ the electrical conductivity and κ the thermal conductivity. Many papers presented in these proceedings revolve around either maximizing the numerator of Z, called the power factor, or by minimizing κ. The theme of a phonon-glass electron-crystal (PGEC), first proposed by Glen Slack, is very prevalent in the many papers presented in this volume. In the PGEC model the ideal thermoelectric material would possess the thermal properties of a glass and the electronic properties of a crystal. The best thermoelectric materials presently in use have a maximum value of $ZT = 1$, the upper limit for more than 30 years, however from some of the papers in this volume this "upper limit" may now begin to be irrelevant. There are currently many new methods of materials synthesis and much more rapid characterization of thermoelectric materials than were
available 15 or 20 years ago. Many new researchers and new ideas are appearing in this field, which gives us great anticipation about future advances. It is the hope of the organizers of this symposium that these proceedings will provide a benchmark for the current state in the field of thermoelectric materials research and development.

This symposium was enabled by the support of Advanced Research Systems, General Motors Corp., Marlow Industries, MMR Technologies, Quantum Design, Springer-Verlag and the MRS. The organizers appreciate and acknowledge the support of their sponsors.

George S. Nolas
David C. Johnson
David G. Mandrus

January 2002
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

Prior Materials Research Society Symposium Proceedings available by contacting Materials Research Society