Nanostructured Interfaces

Symposium held April 2–4, 2002, San Francisco, California, U.S.A.

EDITORS:

Juergen M. Plitzko
Max-Planck-Institute of Biochemistry
Martinsried, Germany

Gerd Duscher
North Carolina State University
Raleigh, North Carolina, U.S.A.

Yimei Zhu
Brookhaven National Laboratory
Upton, New York, U.S.A.

Hideki Ichinose
University of Tokyo
Tokyo, Japan

Materials Research Society
Warrendale, Pennsylvania
CONTENTS

Preface...ix

Materials Research Society Symposium Proceedings..x

CHARACTERIZATION OF
NANOSTRUCTURED INTERFACES

Quantitative HRTEM Investigation of an Obtuse Angle Dislocation Reaction in Gold With a Cs Corrected Field Emission Microscope...3

Joerg R. Jinschek, Ch. Kisielowski, T. Radetic, U. Dahmen,
M. Lentzen, A. Thust, and K. Urban

NANOSTRUCTURED INTERFACES IN
CATALYSTS AND SENSORS

Electron Holographic Nano-Characterization of Gold Catalyst at Interface..11

S. Ichikawa, T. Akita, M. Okumura, M. Haruta, and K. Tanaka

Nanostructured Polymer Brushes With Reversibly Changing Properties.....................................17

Denys Usov, Manfred Stamm, Sergiy Minko, Christian Froeck,
Andreas Scholl, and Marcus Müller

NANOSTRUCTURED INTERFACES IN
STRUCTURAL MATERIALS

* Mechanical Behavior of Nanocrystalline Copper Related to Grain-Boundary Structure..............................25

Y. Champion, P. Langlois, S. Guérin-Mailly, C. Langlois,
and M.J. Hýtch

Green’s Function Method for Calculation of Strain Field Due to a Quantum Dot in a Semi-Infinite Anisotropic Solid ...37

V.K. Tewary

*Invited Paper
CATALYSTS AND SENSORS

Microstructure Studies on Hexagonal Layered Ni-S Nanocrystals ... 45
Xiang-Cheng Sun, J. Reyes-Gasga, and J.A. Toledo

STRUCTURAL MATERIALS

Chemical Structure Analysis of a 111/2 Grain Boundary in α-SiC
by ARHVTEM .. 53
Eriko Takuma and Hideki Ichinose

Influence of Interfaces on the Phase Stability in Nanostructured
Thin Film Multilayers .. 59
G.B. Thompson, R. Banerjee, S.A. Dregia, and H.L. Fraser

High Strength Nanoscale Al/Al3Sc Multilayers Formed by
Interface Reaction .. 65
M.A. Phillips, B.M. Clemens, and W.D. Nix

MAGNETIC MATERIALS

Evolution of the Electronic Structure of Metallic Multilayers
From Two- to Three-Dimensionality: A Full Potential
Linearized Augmented Plane Wave Calculation .. 73
A.M. Mazzone

NANOSTRUCTURED INTERFACES IN
STRUCTURAL AND MAGNETIC MATERIALS

Manipulations of Nanoparticle Chain Aggregates in
Transmission Electron Microscopy ... 81
Yong J. Suh, Sergey V. Prikhodko, and Sheldon K. Friedlander

NANOSTRUCTURED INTERFACES IN
OXIDES AND ELECTRO-OPTICAL MATERIALS

Photoluminescence of Nano-Scaled YAG:Ce Phosphor Powders ... 89
In-Gann Chen, Yulin Chen, Chii-Shyang Hwang, F.S. Juang,
Growth of GaN Nanorods on (0001) Sapphire Substrates by Hydride Vapor Phase Epitaxy

Hwa-Mok Kim, Doo Soo Kim, Young Wook Chang, Deuk Young Kim, and Tae Won Kang

The Local Electronic Structure at Grain Boundaries and Hetero-Interfaces in ZnO Thin Films Grown by Laser Deposition

Alexander Kvit, Gerd Duscher, Chunming Jin, and Jagdish Narayan

ELECTRO-OPTICAL MATERIALS

Quantitative High-Resolution Transmission Electron Microscopy of III-V Semiconductor Interfaces by Multivariate Statistical Analysis of Exit-Plane Wave Function Images

Krishnamurthy Mahalingam, Kurt G. Eyink, Gail J. Brown, and Donald L. Dorsey

Morphology and Atomic Structure of Grain Boundaries in GaN Grown by MOVPE

Eriko Takuma, Hideki Ichinose, Sakuntam Sanorpim, and Kentaro Onabe

Investigation of Oxidation Process of Ultrathin Amorphous and/or Nano-Crystalline Silicon Films

ELECTRONIC MATERIALS

Ge-Rich Si1-xGe x Nanocrystal Formation by the Oxidation of As-Deposited Thin Amorphous Si0.7Ge0.3 Layer

Tae-Sik Yoon and Ki-Bum Kim

Nanometer Scale Composition Variations in Ge Quantum Dots on Si(100)

Yangting Zhang, Margaret Floyd, Jeff Drucker, P.A. Crozier, David J. Smith, and K.P. Driver

vii
NANOSTRUCTURED INTERFACES IN ELECTRONIC MATERIALS I

* Ab Initio Simulations of Quantum Transport: Si Clusters and Fullerene Chains
Christopher Roland, Vincent Meunier, Brian Larade, Jeremy Taylor, and Hong Guo

Surface Potential Mapping of Patterned Self-Assembled Monolayers by Scanning Probe Microscopy
R. Ross Getty, Rodolfo Alvarez, Dawn A. Bonnell, Kenneth G. Sharp, Simona Percec, and Paula B. Hietpas

Direct Electron Beam Processing of Semiconductor Nanostructures
Yeonjoon Park, Rian Zhao, Petra Specht, and Eicke R. Weber

NANOSTRUCTURED INTERFACES IN ELECTRONIC MATERIALS II

* Atomic and Electronic Structure of Interfaces at SiC Studied by Indirect Super HRTEM and Electron Spectroscopy Imaging
J.Y. Yan, Hideki Ichinose, Fu-Rong Chen, J.J. Kai, and Eriko Takuma

Field Emission Characteristics of Carbon Nanotubes Synthesized by C3H4 and NH3 Gases
Taewon Jeong, Jae Hee Han, Whikun Yi, SeGi Yu, Jeonghee Lee, Jungna Heo, Chang Soo Lee, Ji-Beom Yoo, and J.M. Kim

Author Index

Subject Index

*Invited Paper
PREFACE

As we already know from manifold investigations in materials science, relevant macroscopic properties depend, by and large, on internal surfaces. Remarkably, nanostructured materials consist of more than half of their volume of interfaces. Therefore, a deeper understanding of the fundamental properties of materials in these dimensions can only be accessed by suitable characterization and investigation techniques, which allow us to research these nanostructured interfaces.

Even though the processing of nanostructured materials has advanced enormously over the last few years, the basic nature of interfaces and their influence to properties remains elusive. For example, the adhesion and passivation of nano-assemblies, which are crucial for applications, are currently not well understood.

This symposium, "Nanostructured Interfaces," held April 2–4 at the 2002 MRS Spring Meeting in San Francisco, California, focused primarily on the basic science of interfaces in nanostructured materials, emphasizing the characterization at the atomic level. Papers focusing on experimental investigations, utilizing transmission electron microscopy (TEM) and analytical electron microscopy (AEM), such as energy filtered TEM (EFTEM) and electron energy loss spectroscopy (EELS), are part of this proceedings volume as well as advanced theoretical studies on various nanostructured materials. The synergetic effect by the combination of experimental and theoretical studies is beautifully shown, and the importance of continuative theoretical studies is accentuated, as well as the demand for applications of localized characterization techniques at nanostructured interfaces.

To conclude, we would like to take the opportunity to gratefully acknowledge support by JEOL Ltd. Tokyo, Japan and the Lawrence Livermore National Laboratory, California, U.S.A.

Juergen M. Plitzko
Gerd Duscher
Yimei Zhu
Hideki Ichinose

September 2002