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Introduction

1.1 Atoms

The virtually infinite variety of phenomena – the properties of matter, living and
non-living, its behaviour and transformations – are manifestations of the various
ways in which a limited number of structural units – atoms – can combine with
each other to build up more intricate structures. This is now common knowledge.
When it was proposed by Democritus and Epicurus in the fourth century BC, it
was an astonishing hypothesis. A definitive exposition of the Democritean atomic
hypothesis, De Rerum Natura, was written by Lucretius (c. 60 BC) (English trans-
lation by R. E. Latham: Lucretius (1994)). Through the medium of an epic Latin
poem, Lucretius demonstrates how numerous familiar phenomena can be rationally
accounted for on the assumption that ‘there exists only atoms and empty space’. Its
intuitive insights and uncanny premonitions of modern physics are all the more
amazing in view of the fact that experimentation was of no great interest to editors
of the Greek philosophers – the arguments are based on thoughtful observation of
familiar things. The recent elucidation of the anti-Kythera mechanism, a mechani-
cal device from the time of Lucretius like an orrery, for predicting the positions of
celestial objects, which could perhaps be used for determining the longitude,
shows that the experimental tradition of Archimedes continued.

Lucretius, in criticising the theory of Anaxagoras, even describes what we might
now call ‘fractals’: ‘in speaking of the homoeomeria of things Anaxagoras means
that the bones are formed of minute miniature bones . . . gold consists of grains of
gold . . . fires of fires . . .’

Concerning the number of elements, Lucretius wisely refused to enter into
unfounded metaphysical speculations, saying only that the number of different
kinds of atom is finite. The traditionally held view, opposed by Lucretius, was that
there are just four elements: earth, fire, air and water, which were supposed to cor-
respond symbolically to the four regular polyhedra, cube, tetrahedron, octahedron
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and icosahedron (Figure 1.1). (The fifth regular polyhedron, the pentagonal dodeca-
hedron, corresponded to the mysterious ‘fifth essence’ – the notion underlies the
etymology of quintessential.)

In Plato’s view, the correspondence between the four elements and four regular
polyhedra was not only symbolic – he proposed that these polyhedra corresponded
to the actual shapes of the atoms. For this reason the regular polyhedra are referred
to as the ‘Platonic solids’. Even the strangest ideas can contain a grain of truth: the
regular and the semi-regular polyhedra (‘the 5 Platonic and 13 Archimedean solids’)
are indeed prominent features in the microstructure of solids and liquids, but in the
shapes of clusters of atoms rather than of individual atoms. Plato, in his ‘Timaeus’,
sees the polyhedra as themselves built of 45-90-45 degree and 60-90-30 degree tri-
angles, which are just the figures still to be found in a school geometry set. The five
symmetrical ‘Platonic’ configurations were already known a millenium before the
time of Plato. Over 400 carved stone balls from neolithic times have been found 
at various sites in northern Scotland. The Universities of Aberdeen and Glasgow
possess extensive collections of these objects. A particularly fine set of five,

2 Introduction

Figure 1.1 The five Platonic solids and the four elements; from Kepler’s Harmonice
Mundi (Kepler 1619).
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exhibiting the five configurations, is owned by the Ashmolean Museum, Oxford
(see Figure 1.2).

The notion of the four elements had a powerful hold over scientific thinking
until surprisingly recent times. Joseph Priestley discovered the element oxygen in
1774. Antoine Lavoisier repeated Priestley’s experiments and understood their sig-
nificance: air is composed of several gases, and oxygen is one of them. He also
suggested that water, too, is a compound. These insights marked the beginnings of
modern chemistry. This was the response of Antoine Baumé (1728–1804), the
speaker of the Paris Academy of Science: ‘The elements or base components of
bodies have been recognised and determined by physicists of every century and
every nation. It is inadmissible that the elements recognised for 2000 years should
now be included in the category of compound substances. They have served as the
basis of discoveries and theories . . . We should deprive these discoveries of all
credibility if fire, water, air and earth were no longer to count as elements.’

This epitomises the fact that human beings, like crystals, are creatures of habit.
Ways of approaching problems, once they have proved successful, tend to become
rigidified into traditions. The history of science is replete with examples of how
well-established patterns of thought have hampered the emergence of new devel-
opments that, once they have emerged, open up new worlds for exploration.

1.2 Geometry

For more than 2000 years mathematicians took it for granted that geometry, as
systematised and presented by Euclid, was the only possible geometry, until the
discovery by Bolyai and Lobachevski in the nineteenth century of ‘non-Euclidean
geometry’. The geometry of Bolyai and Lobachevski is the geometry of the
hyperbolic plane, H2, which readily generalises to hyperbolic spaces, Hn. The

Geometry 3

Figure 1.2 Scottish neolithic stone carvings corresponding to the regular polyhedra,
in the Ashmolean Museum, Oxford. Their purpose is unknown. Photo by Graham
Challifour for Critchlow (1979). Reproduced by kind permission of Graham
Challifour and Keith Critchlow.
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hypersurfaces Sn of hyperspheres in Euclidean spaces En�1 give another family of
non-Euclidean geometries. (The subscripts indicate the dimensions of the space in
question). Spherical trigonometry – geometry on the surface of a sphere – is the
geometry of S2; it was investigated by Hipparchus (150 BC) and the basic theo-
rems are in the Spheraeca of Menelaus and in Ptolemy’s Almagest. Two thousand
years passed before anyone noticed that this is a non-Euclidean geom-etry of two
dimensions! The spaces En, Sn and Hn are spaces of constant Gaussian curvature
(zero, positive and negative, respectively). The formulae of hyperbolic geometry
H2 are just those of the geometry on the surface of a sphere, but with the radius of
the latter set to i, the square root of minus one. Riemann generalised still further,
developing the geometry of spaces in which the metrical properties varied contin-
uously from point to point – a generalisation to higher dimensions of the intrinsic met-
rical properties of surfaces, which had been investigated by Gauss. The most
general – and in a sense the most primitive – kind of geometry is topology, which
takes no account of metrical properties; it deals only with the continuity and com-
binatorial properties of geometrical figures.

Although material structures, of course, exist in three-dimensional (3D) Euclidean
space, some of the more exotic geometrical concepts have recently entered into the
materials sciences, providing new and stimulating ways of thinking about these
structures. We shall occasionally touch upon some of these developments, which
serve to indicate the increasingly important role of mathematics in the science of
materials.

1.3 Crystallography

A major mathematical contribution to our present understanding of the atomic con-
stitution of crystalline solids was the work of Schoenflies, Fedorov and Barlow
which classified triply periodic patterns in E3 – there are just 230 different possible
types, characterised by their symmetries. The geometrical theory of the symmetries
of all possible crystals is one of the triumphs of nineteenth century mathematics. It is
an elaborate edifice built on the basis of a simple assumption, namely that an ‘ideal’
crystal consists of an infinite number of identical units arrayed in space so that all
have identical surroundings.

The experimental verification came with the introduction of X-ray structure
analysis. The diffraction of X-rays by crystals was discovered by Max von Laue in
1912. He received a Nobel prize for this discovery two years later. Lawrence
Bragg, the developer of the method along with his father William Bragg, revealed
the atomic structure of sodium chloride as an array of alternating sodium and chlo-
rine ions like a three-dimensional chessboard. Lawrence Bragg heard the news of
his Nobel prize in 1916 while serving as an officer on the Western Front. With their
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technique they were able, by 1923, to laboriously produce pictures of the atoms of
calcium, silicon and oxygen arranged in the mineral diopside. Since then, the
arrangement of atoms in all matter, living and non-living, has been the basis of our
understanding of its properties and behaviour.

Along with the development of X-ray diffraction techniques, the 230 space groups
became the key to understanding crystalline structures. A picture emerged of a ‘per-
fect’ solid consisting of an arrangement of atoms ‘decorating’ the interior of a unit
cell, which, repeated by translation, produces the whole structure. Unfortunately, this
elegant scheme for a long time had a constraining effect on crystallographers some-
what analogous to the effect of Euclid’s scheme on geometers. It became the para-
digm. Important features of real materials were called ‘defects’ and materials that
did not fit the scheme were dismissed as ‘disordered’.

1.4 Generalised Crystallography

The discovery of quasicrystals has brought home forcefully to crystallographers
the fact that a material structure could be highly ordered without being periodic.
There are other, perhaps more interesting, ways in which structures can be orderly
and systematic. Atoms and molecules know nothing of unit cells and they know no
group theory; they simply respond to their immediate collective environment. Triple
periodicity, when it arises, is a necessary consequence – an epiphenomenon – of more
localised ordering principles. (An amusing illustration of the dominance of old ways
of thinking is the modelling of quasicrystal structure in terms of a pair of ‘unit cells’
instead of one!)

A detailed understanding of how large-scale order (of any kind, not necessarily
periodicity) arises from local ordering principles remains elusive. A theorem, due
to Boris Nikolaievich Delone (Delone et al. 1934; 1976) throws some light on the
way in which periodicity can arise from purely local conditions. A Delone set
(r, R) in En is a set of points with the property that every sphere of radius r contains
at most one of the points and every sphere of radius R contains at least one of the
points (i.e. the points can be thought of as centres of hard spheres of radius r, and
there are no large voids in the arrangement). Suppose, further, that for some length
�, the configurations within spheres of radius � � 2R centered at the points of the
set are all congruent, and that the symmetry of this configuration is the same as the
symmetry of the configuration within a radius �. Then the point set is (n-tuply)
periodic. A simple proof of this assertion has been given by Senechal (1986). In E2,
� can be taken to be 4R and in E3 it is conjectured that � � 6R.

The proposal that the scope of theoretical crystallography could, and should, be
extended to embrace the study of systematic structures more general than the clas-
sical triply periodic structures of ‘perfect’ crystals, has long been advocated
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(Bernal & Carlisle 1968; Mackay 1975). For a major portion of the twentieth cen-
tury experimental crystallography was dominated by X-ray diffraction – a circum-
stance that restricted theoretical crystallography mainly to those structures that
could be understood and described in terms of lattices and their reciprocal lattices.
X-ray diffraction detected and emphasised the periodicities of a structure. In recent
decades new experimental and observational techniques have become available,
especially high-resolution electron microscopy, and have made ‘generalised crys-
tallography’ a real possibility. Crystal structure analysis using the scattering of 
X-rays by crystals of the material under investigation has been such an enormously
successful technique that other methods have been eclipsed. The technique has
been to crystallise many copies of the molecule under investigation and effectively
to use this ordered array as an amplifier of the scattering from a single molecule.
To see atoms individually in less regular structures required the development of
electron microscopy which has only recently reached the necessary resolving power.
With this and other techniques, such as atomic force microscopy, the elaborate order-
ing of the atoms in both living and inorganic materials has begun to be revealed. In
real materials we usually find several levels of organisation with different rules at
each level. Hierarchy is the characteristic, in particular, of living systems. The
present period has seen a rising appreciation of the ways in which structure and
information are intimately connected. This was epitomised in the most important
discovery of the twentieth century, the double helix of DNA, where the material
structure encodes information as a sequence of base pairs. The general principle
underlying this encoding of genetic information in an ‘aperiodic crystal’ had already
been foreseen by Erwin Schrödinger in his book What is Life? (Schrödinger 1944).
At the same time, immense computational power has developed, enabling the
geometry of very complex structures to be handled and to be presented as com-
puter graphics.

1.5 Shapes and Structures

The English and Scottish traditions of science, far more than the Continental, have
been based on model-making, on visualisation and on analogy with everyday
mechanisms rather than on words, formulae and logic-chopping. J. C. Maxwell,
William Thomson (Lord Kelvin), W. H. D’Arcy Thompson, W. L. Bragg and 
J. D. Bernal are some of the masters of this British tradition, while Descartes,
Gödel, Euler, Heisenberg, Claude Bernard, epitomise the Continental Schools, the
attitude of which was exemplified by Pierre Duhem (1861–1916).

In 1917, in the middle of World War I, D’Arcy Wentworth Thomson in the
University of Dundee produced his magnum opus On Growth and Form, in which
he applied simple mathematics and physics to the problems of the multifarious
shapes encountered in the living world.

6 Introduction
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It is clear that, even though considerable knowledge was available at the time,
D’Arcy Thompson (1860–1948), did not wish to take atoms and microstructure at
the atomic level into account. He mentioned the atomicity of matter only once or
twice and even in the second edition (1942) took little note of the atomic level. His
work was concerned with illuminating the underlying mathematical principles gov-
erning the shapes of living organisms at a macroscopic scale, stopping short at the
level of things visible with a simple microscope.

A transitional manifesto, Structure in Nature is a Strategy for Design by an
architect, Peter Pearce (1978) has been influential, just before the computer period,
in introducing the geometry of polyhedra and related regular three-dimensional
structures to a wider world so that the dominance of cubic structures in our culture
has been reduced. Robert Williams’ The Geometrical Foundations of Natural
Structure (1979) takes a similar approach, taking examples of intricate polyhedral
structures from the geometry of complex arrangement of atoms in crystalline mate-
rials. We must mention too the vital role played by H. S. M. Coxeter in reviving 
a general interest in geometry and educating several generations throughout his
long life and particularly with his textbook An Introduction to Geometry (1969).
Grünbaum and Shephard wrote: ‘mathematicians have long since regarded it as
demeaning to work on problems related to elementary geometry in two or three
dimensions, in spite of the fact that it is precisely this sort of mathematics which is
of practical value.’

Our aim, then, in the chapters which follow, is to survey some of the important
developments that have been taking place in recent decades in our understanding of
the structure of complex materials, with the emphasis on the underlying geometrical
principles.

Johannes Kepler (1571–1630) can be regarded, for many reasons, as the initiator of
this approach. It was Kepler who produced for the first time a rigorous enumeration of
the ‘regular’ tilings of the plane. He also considered tilings that include regular pen-
tagonal tiles and so came close to the concept of aperiodic patterns more than 300
years before the Penrose tilings and the discovery of quasicrystals. He rediscovered
the 13 semi-regular polyhedra and discovered the rhombic triacontahedron, which
is now known to be an important key to the structure of icosahedral quasicrystals. It
was Kepler who suggested that the hexagonal symmetry of snowflakes could arise
from a close packing of identical subunits, and it was Kepler who guessed, cor-
rectly, that the densest possible packing of spheres is the arrangement now known
as ‘cubic close packing’ (Kepler 1611). Robert Hooke, applying the microscope for
the first time to everything within his reach, began to realise a science of the struc-
ture of matter. Figure 1.3 is taken from Hooke’s Micrographia (Hooke 1665).

We close this chapter with a picture (Figure 1.4) of a portion of Kepler’s config-
uration of nested regular polyhedra, which he believed could account for the radii of
planetary orbits. His unusual mental flexibility allowed him to abandon it and go on to
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discover the three famous fundamental laws of planetary motion. It may seem strange
that we choose to pay tribute to Kepler’s genius by thus drawing attention to a case
where his remarkable intuition led him astray. However, the model epitomises the
perennially fascinating attraction, for the human mind, of the five regular polyhedra.
And the model now seems strangely prophetic – configurations of nested regular and
semi-regular polyhedra have recently re-emerged in the striving of scientists to reveal
Nature’s structural principles, this time in a quite different context – as models of the
clusters of atoms that occur in the building up of complex crystalline solids.

8 Introduction

Figure 1.3 Crystalline structure from Robert Hooke’s Micrographia (Hooke 1665).

Figure 1.4 The portion of Kepler’s configuration of nested regular polyhedra, 
representing the orbits of the inner planets. From Kepler’s Mysterium
Cosmographicum (1596).
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2

2D Tilings

A doubly periodic pattern in the plane has a symmetry group containing two 
independent translations. Two translation vectors determine a parallelogram. A paral-
lelogram whose sides have lengths and directions corresponding to two of the trans-
lations is a primitive unit cell of the pattern, provided there is no smaller parallelogram
formed from translation vectors. Applying the translations to a single point generates
a lattice. The whole pattern is produced by repeated application of the portion of the
pattern within a primitive unit cell, by translating the cell. There are 17 discrete sub-
groups of the Euclidean group of the plane that contain two independent translations
(see for instance Schattschneider (1978) for a simple introduction). They are the
wallpaper groups, and patterns with these symmetry groups are ‘wallpaper patterns’.
In the standard nomenclature for these groups the symbol p denotes the primitive unit
cell, and c denotes a longer rectangular unit cell whose vertices and centre are vertices
of primitive parallelograms. The p or c is then followed by a list of generators: 2, 3, 4
and 6 denote rotations through 2�/2, 2�/3, 2�/4 and 2�/6, m denotes a reflection and
g denotes a glide (the combined effect of a reflection in a line and a translation along
the direction of the line and equal to half a lattice translation).

A tiling, or tessellation, of a space is a subdivision of the space into non-overlapping
regions (‘tiles’). The vertices and edges of a tiling constitute a net. Periodic nets in
two or in three dimensions (2D or 3D) are of fundamental importance in the
description of crystalline structure. In the simplest application vertices and edges
corresponding to atoms and bonds, but highly complex structures can often be more
readily understood and visualised by identifying an underlying net or framework in
the structure – a topic we shall return to in a Chapter 8. O’Keeffe & Hyde (1980)
have given an extensive and fascinating survey of 2D nets that occur in crystalline
structures.

Doubly periodic patterns produced by tiling a plane have been exploited for
their decorative possibilities by every civilisation, for thousands of years. The
ingenuity of medieval Islamic craftsmen is particularly noteworthy, and often quite
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amazing (Bourgoin 1879; El-Said & Parman 1976; Critchlow & Nasr 1979;
Chorbachi 1989).

2.1 Kepler’s Tilings

The first known example of a mathematically rigorous approach to a tiling problem is
probably Kepler’s enumeration of all possible tilings of the plane by regular polygons,
with the proviso that all vertices shall be identically surrounded (Kepler 1619).

Suppose that the generic vertex is surrounded by n3 equilateral triangle, n4

squares, and so on. The total angle around the vertex is 2�. This gives

Eleven solutions lead to tilings of the whole plane. In an obvious notation, that
lists the values of p encountered as the vertex is circumnavigated, we have:

36 44 63 34.6 33.42 32.4.3.4 3.4.6.4 3.6.3.6 3.122 4.6.12 4.82

Portions of these tiling patterns are illustrated in Figure 2.1. The tiling 34.6 exists
in two enantiomorphic versions. The tiling 3.6.3.6 is called the ‘kagome’ pattern

( 2)
3
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p
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�

�

∑ / 2

10 2D Tilings

Figure 2.1 The eleven uninodal ways of tiling the plane with regular polygon tiles.
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