V. N. Gribov was one of the creators of high energy elementary particle physics and the founder of the Leningrad school of theoretical physics. This book is based on his lecture course for graduate students. The lectures present a concise, step-by-step construction of the relativistic theory of strong interactions, aiming at a self-consistent description of the world in which total hadron interaction cross sections are nearly constant at very high collision energies. Originally delivered in the mid-1970s, when quarks were fighting for recognition and quantum chromodynamics had barely been invented, the content of the course has not been ‘modernized’. Instead, it fully explores the general analyticity and cross-channel unitarity properties of relativistic theory, setting severe restrictions on the possible solution that quantum chromodynamics, as a microscopic theory of hadrons and their interactions, has yet to find. The book is unique in its coverage: it discusses in detail the basic properties of scattering amplitudes (analyticity, unitarity, crossing symmetry), resonances and electromagnetic interactions of hadrons, and it introduces and studies reggeons and, in particular, the key player – the ‘vacuum regge pole’ (pomeron). It builds up the field theory of interacting pomerons, and addresses the open problems and ways of attacking them.

Vladimir Naumovich Gribov received his Ph.D. in theoretical physics in 1957 from the Physico-Technical Institute in Leningrad, and became the head of the Theory Division of the Particle Physics Department in 1962. From 1971, when the Petersburg (Leningrad) Institute for Nuclear Physics was organized, Gribov led the Theory Division of the Institute. In 1980 he became Head of the particle physics section of the Landau Institute for Theoretical Physics, Moscow. From 1981 he regularly visited the Research Institute for Particle and Nuclear Physics in Budapest where he was a scientific adviser until his death in 1997. Vladimir Gribov was one of the leading theoretical physicists of his time, who made seminal contributions in quantum electrodynamics, neutrino physics, non-Abelian field theory, and, in particular, the physics of hadron interactions at high energies.
CAMBRIDGE MONOGRAPHS
ON PARTICLE PHYSICS,
NUCLEAR PHYSICS AND COSMOLOGY

General editors: T. Ericson, P. V. Landshoff

1. K. Winter (ed.): Neutrino Physics
2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model
3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 1: Electroweak Interactions, the ‘New Particles’ and the Parton Model
4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes
5. C. Grupen: Particle Detectors
6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation
7. B. Anderson: The Lund Model
9. I. I. Bigi and A. I. Sanda: CP Violation
10. A. V. Manohar and M. B. Wise: Heavy Quark Physics
12. D. Green: The Physics of Particle Detectors
15. E. Leader: Spin in Particle Physics
16. J. D. Walecka: Electron Scattering for Nuclear and Nucleon Scattering
17. S. Narison: QCD as a Theory of Hadrons
18. J. F. Letessier and J. Rafelski: Hadrons and Quark-Gluon Plasma
19. A. Donnachie, H. G. Dosch, P. V. Landshoff and O. Nachtmann: Pomeron Physics and QCD
20. A. Hoffmann: The Physics of Synchrotron Radiation
21. J. B. Kogut and M. A. Stephanov: The Phases of Quantum Chromodynamics
22. D. Green: High p_T Physics at Hadron Colliders
24. D. M. Brink and R. A. Broglia: Nuclear Superfluidity
25. F. E. Close, A. Donnachie and G. Shaw: Electromagnetic Interactions and Hadronic Structure
27. V. Gribov: Strong Interactions of Hadrons at High Energies
STRONG INTERACTIONS OF HADRONS AT HIGH ENERGIES

Gribov Lectures on Theoretical Physics

V. N. GRIBOV

Prepared by

Y. L. DOKSHITZER AND J. NYIRI
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge cb2 8ru, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107411302

© Y. Dokshitzer and J. Nyiri 2009

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2009
First paperback edition 2012

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication Data
Gribov, V. N. (Vladimir N.)
Strong interactions of hadrons at high energies: Gribov lectures on theoretical
physics / V. N. Gribov; prepared by Y. L. Dokshitzer and J. Nyiri.
p. cm. – (Cambridge monographs on particle physics, nuclear physics, and cosmology)
Includes bibliographical references and index.
isbn 978-0-521-85609-6
QC793.5.H328G75 2009
539.7’5 – dc22 2008037121
isbn 978-0-521-85609-6 Hardback
isbn 978-1-107-41130-2 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.
Contents

Foreword

page ix

1 Introduction

1.1 Interaction radius and interaction strength
1.2 Symmetries of strong interactions
1.3 Basic properties of the strong interaction
1.4 Free particles
1.5 Hadrons as composite objects
1.6 Interacting particles
1.7 General properties of S-matrix

page 1

2 Analyticity and unitarity

2.1 Causality and analyticity
2.2 Singularities of the Born diagrams
2.3 Higher orders
2.4 Singularities of Feynman graphs: Landau rules
2.5 Beyond perturbation theory: relation to unitarity
2.6 Checking analytic properties of physical amplitudes

page 31

3 Resonances

3.1 How to examine unphysical sheets of the amplitude
3.2 Partial waves and two-particle unitarity
3.3 Analytic properties of partial waves and resonances
3.4 Three-particle unitarity condition
3.5 Properties of resonances
3.6 A resonance or a particle?
3.7 Observation of resonances

page 73
4 Electromagnetic interaction of hadrons 92
4.1 Electron–proton interaction 92
4.2 Form factors 95
4.3 Isotopic structure of electromagnetic interaction 100
4.4 Deep inelastic scattering 102

5 Strong interactions at high energies 111
5.1 The rôle of cross-channels 111
5.2 Qualitative picture of elastic scattering 113
5.3 Analyticity of elastic amplitude and interaction radius 119
5.4 Impact parameter representation 124
5.5 Constant interaction radius hypothesis 125
5.6 Possibility of a growing interaction radius 128

6 t-channel unitarity and growing interaction radius 137
6.1 Analytic continuation of two-particle unitarity 139
6.2 \(\rho_0 = \text{const}, \sigma_{\text{tot}} = \text{const} \) contradicts t-channel unitarity 145

7 Theory of complex angular momenta 152
7.1 Sommerfeld–Watson representation 153
7.2 Non-relativistic theory 155
7.3 Complex \(\ell \) in relativistic theory 159
7.4 Analytic properties of partial waves and unitarity 165

8 Reggeon exchange 173
8.1 Properties of the Regge poles. Factorization 174
8.2 Reggeon quantum numbers. The Pomeranchuk pole 179
8.3 Properties of the Pomeranchuk pole 186
8.4 Structure of the reggeon residue 191
8.5 Elastic scatterings of \(\pi \) and \(N \) of the nucleon 203
8.6 Conspiracy 210
8.7 Fermion Regge poles 213

9 Regge poles in perturbation theory 219
9.1 Reggeons, ladder graphs, and multiparticle production 219
9.2 Reggeization in \(g\phi^3 \) theory 220
9.3 Inelastic processes at high energies 240
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Regge pole beyond perturbation theory</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>10.1 Basic features of multiparticle production</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>10.2 Inconsistency of the Regge pole approximation</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>10.3 Reggeon branch cuts and their rôle</td>
<td>281</td>
</tr>
<tr>
<td>11</td>
<td>Reggeon branchings</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>11.1 $\ell = -1$ and restriction on the amplitude falloff with energy</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>11.2 Scattering of particles with non-zero spin</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>11.3 Multiparticle unitarity and Mandelstam singularities</td>
<td>301</td>
</tr>
<tr>
<td>12</td>
<td>Branchings in the s channel and shadowing</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>12.1 Reggeon branchings from the s-channel point of view</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>12.2 Calculation of the reggeon–reggeon branching</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>12.3 Analytic structure of the particle–reggeon vertex</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>12.4 Branchings in quantum mechanics: screening</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>12.5 Back to relativistic theory</td>
<td>330</td>
</tr>
<tr>
<td>13</td>
<td>Interacting reggeons</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>13.1 Constructing effective field theory of interacting reggeons</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>13.2 Feynman diagrams for reggeon branchings</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>13.3 Enhanced branchings</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>13.4 Feynman diagrams and reggeon unitarity conditions</td>
<td>351</td>
</tr>
<tr>
<td>14</td>
<td>Reggeon field theory</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>14.1 Prescriptions for reggeon diagram technique</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>14.2 Enhanced diagrams for reggeon propagator</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>14.3 $\sigma_{\text{tot}} \simeq \text{const.}$ as an infrared singular point</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>14.4 Weak and strong coupling regimes</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>14.5 Weak and strong coupling: view from the s channel</td>
<td>373</td>
</tr>
<tr>
<td>15</td>
<td>Particle density fluctuations and RFT</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>15.1 Reggeon branchings and AGK cutting rules</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>15.2 Absence of branching corrections to inclusive spectrum</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>15.3 Two-particle correlations</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>15.4 How to tame fluctuations</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>15.5 Weak coupling: vanishing pomeron–particle vertices</td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>15.6 How to rescue a pomeron</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>15.7 Vanishing of forward inelastic diffraction in RFT</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>15.8 All σ_{tot} are asymptotically equal?</td>
<td>416</td>
</tr>
</tbody>
</table>
Contents

16 Strong interactions and field theory 418
 16.1 Overview 418
 16.2 Parton picture 422
 16.3 Deep inelastic scattering 434
 16.4 The problem of quarks 439
 16.5 Zero charge in QED and elsewhere 443
 16.6 Looking for a better QFT 447
 16.7 Yang–Mills theory 454
 16.8 Asymptotic freedom 467

Postscript 470
References 473
Index 475
Foreword

Quantum Chromodynamics (QCD) was in its infancy when Gribov delivered his lectures on strong interactions. Since then QCD had been established as the true microscopic theory of hadrons.

The main (though not the only) focus of these lectures is to present the ‘old theory’ of hadron interactions (known as reggistics). This theory has realized the ‘Pomeranchuk–Gribov programme’ of describing strong interactions without appealing to the internal structure of hadrons. The old theory was launched in 1958 by the Pomeranchuk theorem and reached a climax in Gribov’s prediction of an asymptotic equality of hadron cross sections 15 years later. With the advent of QCD, it was abandoned by the great majority of theorists in the mid-1970s and has been neither taught nor learnt since.

QCD – the ‘new theory’ – is now in its fourth decade. The QCD Lagrangian approach did marvels in describing rare processes. This is the realm of hard interactions that occur at small distances where quarks and gluons interact weakly due to the asymptotic freedom. The domain of expertise of the old theory is complementary: it is about normal size hadron–hadron cross sections, soft interactions that at high energies are dominated by peripheral collisions developing at large distances. QCD only starts to timidly approach this domain, with new generations of researchers borrowing (sometimes improperly) the notions and approaches developed by the ‘old theory’.

A few non-scientific comments are due before you start reading (better still, working through) the book.

The lectures you are about to encounter were given in early 1970s, and so they are presented here: no attempt has been made to ‘modernize’ the text. (Editor’s comments are few and relegated to the footnotes marked (ed.).)
Foreword

Let me mention two problems that emerged when preparing this text: one surmountable, another not. The first derived from the fact that the lectures were delivered twice (in 1972–1973 and then in 1974–1975). The only invariant in these two series was the format of lectures (four hours at the blackboard each Thursday; never a piece of paper with pre-prepared notes to guide the lecturer). The rest was subject to variability. So, a compromise often had to be found between two different presentations of the same topic.

The second problem is as follows. The equations of this book contain 3180 equality signs, while they seldom appeared on the blackboard. With Gribov-the-lecturer, the symbol = was clearly out of favour. I think it was being done on purpose. Gribov was a generous teacher and always implied that his students were capable of deriving mathematically correct formulae, given the rules. He was trying to teach students, in the first place, how to think, how to approach a new problem, how to develop a ‘picture’ of a phenomenon in order to guess the answer prior to deriving it. And ignoring equality signs served as additional means for stressing ‘what was important and what was not’ in the discussion.

Unfortunately, this flavour of a live lecture is impossible to preserve in a printed text which has its specific, and opposite, magic of certainty. I am afraid that having debugged equations, the lectures may have lost in pedagogical impact.

I always looked upon these lectures as a treasure chest. I sincerely believe that when you open it, you will find it filled not with obsolete banknotes but with precious gold coins.

Yuri Dokshitzer