Advanced Structural Ceramics
MATERIALS RESEARCH SOCIETY CONFERENCE PROCEEDINGS

Advanced Structural Ceramics

Symposium held December 1-3, 1986, Boston, Massachusetts, U.S.A.

EDITORS:

P. F. Becher
Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

M. V. Swain
CSIRO, Victoria, Australia

S. Sōmiya
Tokyo Institute of Technology, Yokohama, Japan

MATERIALS RESEARCH SOCIETY SYMPOSIA PROCEEDINGS VOLUME 78
Contents

Preface..xiii

PART I - TRANSFORMATION ANALYSIS

Displacive Phase Transformation in Zirconia-Based Ceramics...........3
B.C. Muddle

A Study of Rhombohedral Phase in Y₂O₃-Partially Stabilized
Zirconia..17
Y. Kitano, Y. Mori, A. Ishitani and T. Masaki

Texture on Ground, Fractured, and Aged Y-TZP Surfaces.................25
F. Reidinger and P.J. Whalen

Constitutive Laws for Ceramics Exhibiting Stress-Induced
Martensitic Transformation...35
J.C. Lambropoulos

The Stress Induced Transformation by Fracture in Y₂O₃
Containing Tetragonal Zirconia Polycrystals..43
G. Katagiri, H. Ishida, A. Ishitani and T. Masaki

Reversible Transformation Plasticity in Uniaxial
Tension-Compression Cycling of Mg-PSZ...51
K.J. Bowman, P.E. Reyes-Morel and I-W. Chen

PART II - TRANSFORMATION PLASTICITY AND TOUGHNESS

Deformation of Transformation Toughened Zirconia.........................61
J. Lankford

Transformation Plasticity and Transformation Toughening
in Mg-PSZ and Ce-TZP...75
I-W. Chen and P.E. Reyes-Morel

The Temperature Dependence of Yield Stress and Fracture
Toughness in Unstabilized Zirconia Crystals..89
T.W. Coyle, R.P. Ingel and P.A. Willging

Strength and Toughness of Mg-PSZ and Y-TZP Materials
at Cryogenic Temperatures..97
S. Veitch, M. Marmach and M.V. Swain

Crack Propagation in Mg-PSZ..107
M.J. Readey, A.H. Heuer and R.W. Steinbrech
PART III - MECHANICAL PROPERTIES AND MICROSTRUCTURES OF ZIRCONIA TOUGHENED CERAMICS

Mechanical Property and Microstructure of TZP and TZP/Al2O3 Composites .. 123
K. Tsukuma and T. Takahata

Evaluation of Commercially Available Transformation Toughened Zirconia .. 137
J.J. Swab

Mechanical Properties and Thermal Stability of Yttria-Doped Tetragonal Zirconia Polycrystals with Diffused Ceria in the Surface ... 147
T. Sato, S. Ohtaki, T. Fukushima, T. Endo and M. Shimada

Strength Improvement in Transformation Toughened Ceramics Using Compressive Residual Surface Stresses .. 155

Zirconia Dispersed Mullite Ceramics Through Hot-Pressing of Amorphous ZrO2-SiO2-Al2O3 Obtained by Rapid Quenching .. 165
M. Yoshimura, T. Noma, Y. Hanaue and S. Sōmiya

PART IV - MECHANICAL BEHAVIOR OF REINFORCED CERAMIC COMPOSITES

Strength and Interfacial Properties of Ceramic Composites ... 175
D.B. Marshall

The Strength of Fibres in All-Ceramic Composites ... 181
K. Kendall, N.McN. Alford and J.D. Birchall

Weibull Modulus of Toughened Ceramics ... 189
K. Kendall, N.McN. Alford and J.D. Birchall

Effect of Changes in Grain Boundary Toughness on the Strength of Alumina .. 199
R.F. Cook

Erosion of a Silicon Carbide Whisker Reinforced Silicon Nitride .. 207
C.T. Morrison, J.L. Routbort and R.O. Scattergood

Comparison of Matrix Variation in Nicalon (SiC) Fiber Reinforced Composites 215
W.L. Johnson, III and R.G. Brasfield

Interfacial Characterizations of Fiber-Reinforced SiC Composites Exhibiting Brittle and Toughened Fracture Behavior ... 223
M.H. Rawlins, T.A. Nolan, D.P. Stinton and R.A. Lowden

Analysis by SIMS and by EELS-EDX in a Stem of SiC Fibers Reinforced Composites .. 231
M. Lancin, F. Anxionnaz, M. Schumacher, O. Dugne and P. Trebbia
PART V - FRACTURE AND DEFORMATION BEHAVIOR IN CERAMIC COMPOSITES

Strain and Fracture in Whisker Reinforced Ceramics
P. Angelini, W. Mader and P.F. Becher

On Prevalent Whisker Toughening Mechanisms in Ceramics
A.G. Evans, M. Rühle, B.J. Dalgleish and M.D. Thouless

Microstructure Development in Si$_3$N$_4$-Based Composites
S.T. Buljan and G. Zilberstein

Deflection-Toughened Corundum-Rutile Composites
S. Hori, H. Kaji, M. Yoshimura and S. Sōmiya

Processing and Creep Performance of Silicon Carbide Whisker Reinforced Silicon Nitride
J.R. Porter, F.F. Lange and A.H. Chokshi

Deformation Behavior of SiC Whisker Reinforced Si$_3$N$_4$

Author Index

Subject Index
Preface

The papers contained in this proceedings were presented at the symposium on "Advanced Structural Ceramics" held in Boston, Massachusetts, December 1–3, and 1986 sponsored by the Materials Research Society. The symposium addressed recent research in the field of toughened ceramics and included that on transformation toughening and fiber and whisker reinforced ceramics. The symposium was international in character which is indicative of the wide interest in exploring mechanisms to enhance the fracture resistance of ceramics. The research presented at the symposium provides considerable insight into our progress in these areas.

The success of any symposium also reflects the support of others. This symposium was made possible by the financial support of the U.S. Department of Energy through the Division of Materials Sciences, Office of Basic Energy Sciences and the Energy Conversion and Utilization Technologies Materials Program, Office of Renewable Energy. We would like to especially acknowledge A.H. Heuer, D.R. Clarke, F.F. Lange, R.J. Gottschall, and R.M. Cannon for subchairing this session and coordinating manuscript reviews. Their efforts contributed greatly to the success of this symposium. Finally, sincere thanks are extended to Fauna Stooksbury who provided not only secretarial services but also handled and coordinated many of the details required to conduct the symposium and publish the proceedings.

P.F. Becher
M.V. Swain
S. Sōmiya