Materials Stability and Environmental Degradation
Materials Stability and Environmental Degradation

Symposium held April 5-7, 1988, Reno, Nevada, U.S.A.

EDITORS:

A. Barkatt
The Catholic University of America, Washington, D.C., U.S.A.

E.D. Verink, Jr.
University of Florida, Gainesville, Florida, U.S.A.

L.R. Smith
National Bureau of Standards, Gaithersburg, Maryland, U.S.A.
Contents

PREFACE ix

ACKNOWLEDGMENT xi

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS xii

PART I: COMPOSITES FOR CRITICAL APPLICATIONS

*CARBON/CARBON COMPOSITES: FABRICATION AND PROPERTIES
AND SELECTED EXPERIENCES
Richard C. Dickinson 3

*RESPONSE OF CARBON-CARBON COMPOSITES TO CHALLENGING
ENVIRONMENTS
Howard G. Maahs, Craig W. Ohlhorst, David M. Barnett, Philip O. Ransone, and J. Wayne Sawyer 15

*ADVANCED METAL MATRIX COMPONENTS
C. Robert Crowe 31

OXIDATION AND PROTECTION OF FIBERGLASS-EPOXY COMPOSITE
MASTS FOR PHOTOVOLTAIC ARRAYS IN THE LOW EARTH ORBITAL
ENVIRONMENT
Sharon K. Rutledge, Phillip E. Paulsen, Joyce A. Brady, and Michael L. Ciancone 45

*CHEMICAL INTERACTIONS IN CERAMIC AND CARBON-CARBON
COMPOSITES
Krishan L. Luthra 53

POTENTIAL FOR DIBORID E REINFORCEMENT OF OXIDE MATRIX
COMPOSITES
K. Vedula, A. Abada, and W.S. Williams 61

PART II: METALS AND ALLOYS

DEGRADATION OF NON-OXIDE REINFORCEMENT AND OXIDE MATRIX
COMPOSITES
E.E. Hermes and R.J. Kerans 73

MATERIALS FOR ROCKET ENGINE APPLICATIONS
Leonard Schoenman 79

SELECTIVE CORROSION RESISTANCE OF CHROMIUM IMPLANTED
Cu-37\%Zn ALLOY
J-P. Hirvonen, R.O. Toivanen, and V.K. Lindroos 87

THE STABILITY OF METALS IN THE ATMOSPHERE: NEW CHEMICAL
INSIGHTS TO OLD PROBLEMS
T.E. Graedel 95
PART III: ENVIRONMENTAL EFFECTS ON GLASS

GLASS STRUCTURE AND GLASS DURABILITY
William B. White 109

*GLASS CORROSION THEORIES: A TOOL FOR UNDERSTANDING THE PAST, DESIGNING FOR THE PRESENT AND PREDICTING THE FUTURE
P.B. Adams 115

INTERACTIONS OF SILICATE GLASSES WITH AQUEOUS ENVIRONMENTS UNDER CONDITIONS OF PROLONGED CONTACT AND FLOW

*PREDICTION OF GLASS DURABILITY AS A FUNCTION OF ENVIRONMENTAL CONDITIONS
C.M. Jantzen 143

REVISED Eh–pH DIAGRAMS (25 C, ONE BAR) FOR URANIUM AND TRANSURANIC ELEMENTS: APPLICATION TO RADIOACTIVE WASTE STUDIES
D.G. Brookins 161

ROLE OF SURFACE LAYERS IN THE LEACHING BEHAVIOR OF GLASS
B.K. Zolitos and D.E. Clark 169

*REACTIONS OF GLASSES WITH AQUEOUS AND NONAQUEOUS ENVIRONMENTS
R.H. Doremus 177

*CORROSION OF SILICATE GLASSES: AN OVERVIEW
Larry L. Hench 189

PROGRESS IN HALIDE GLASS FIBERS
Ishwar D. Aggarwal 201

PART IV: ENVIRONMENTAL CRACKING

*ENVIRONMENTALLY ENHANCED FRACTURE OF CERAMICS
Stephen W. Freiman 205

*DEVELOPMENTS IN QUANTIFICATION AND USE OF ENVIRONMENTAL CRACKING MECHANISMS FOR DESIGN AND LIFETIME PREDICTION
Peter L. Andresen and F. Peter Ford 217

QUANTITATIVE THEORY OF SENSITIZATION
Thomas M. Devine 235

AN EMPIRICAL MODEL FOR ENVIRONMENTAL DAMAGE AT THE CRACK TIP
K.-M. Chang 243

STRESS CORROSION CRACKING OF MAGNESIUM DIE CASTING ALLOYS
William K. Miller 253

*Invited Talk
PART V: RADIATION EFFECTS

RADIATION EFFECTS IN SILICATE GLASSES - A REVIEW
Ned E. Bibler and David G. Howitt

ELECTRON INTERACTION WITH ALKALI CHROMIUM FLUORIDES IN THE HIGH-RESOLUTION ELECTRON MICROSCOPE
Renu Sharma and LeRoy Eyring

PART VI: COATINGS AND SURFACE MODIFICATION

*LIFETIME PREDICTION OF ORGANIC COATINGS ON STEEL
M. Kendig and F. Mansfeld

PHTHALOCYANINE AND POLYPHTHALOCYANINE COATINGS FOR CORROSION PROTECTION OF METALS
S. Hettiarachchi, Y.W. Chan, R.B. Wilson, Jr., and V.S. Agarwala

*CONFIGURED SEMICONDUCTOR/INSULATOR COATINGS FOR CORROSION PREVENTION
F.C. Jain, J.J. Rosato, K.S. Kalonia, and V.S. Agarwala

PART VII: DETERIORATION OF NATURAL, ANCIENT AND MODERN GLASS

*OBSIDIAN HYDRATION RATE DEVELOPMENT
Jonathon E. Ericson

*GLASS HYDRATION MECHANISMS WITH APPLICATION TO OBSIDIAN HYDRATION DATING
William B. White

EXPERIMENTAL HYDRATION STUDIES OF NATURAL AND SYNTHETIC GLASSES
John K. Bates, Teofilo A. Abrajano, Jr., William L. Ebert, James J. Mazer, and Thomas J. Gerdin

DIFFUSION CELLS FOR INTEGRATING TEMPERATURE AND HUMIDITY OVER LONG PERIODS OF TIME
Fred Trembour, Franklin L. Smith, and Irving Friedman

LINEAR FREE ENERGY RELATIONSHIPS IN GLASS CORROSION
Teofilo A. Abrajano, Jr., John K. Bates, J.K. Bohlke

OBSIDIAN HYDRATION DATING - FIELD, LABORATORY, AND MODELING RESULTS

INDUCED OBSIDIAN HYDRATION EXPERIMENTS: AN INVESTIGATION IN RELATIVE DATING
Kim J. Tremaine and David A. Fredrickson

*Invited Talk
CHANGES IN WATERLOGGED MEDIEVAL WINDOW GLASS
Helen I. Alten

AUTHOR INDEX

SUBJECT INDEX
Preface

This book contains most of the papers presented at the symposium "Materials Stability and Environmental Degradation" held as part of the 1988 MRS Spring Meeting, Reno, Nevada, April 5-8, 1988.

The symposium covered a broad range of subjects related to materials stability and corrosion phenomena, but several themes were repeatedly emphasized. In the search for high-performance materials in aggressive environments, stability and corrosion resistance, rather than cost and ease of fabrication, have become the primary considerations. Combinations of materials, rather than single materials, are needed in many cases to satisfy such needs. Understanding of corrosion and degradation mechanisms is a key element in the development of resistant materials, and studies of these mechanisms in different types of materials—metals, crystalline ceramics, and glasses—exhibit a surprisingly high potential for correlation and cross-fertilization.

Specifically, carbon/carbon composites have become the materials of choice for applications requiring high tensile strength and light weight at temperatures between 2000°F and 3200°F despite their high cost ($11,000/lb). Such applications include aircraft brake discs, missile nose tips, and rocket nozzle throats and exit cones. To provide oxidation resistance for such composites in space shuttle nose caps and wing leading edges, gas turbine engine components and missile propulsion components, such composites have to be coated with ceramic coatings. These and lower-temperature composites will be extensively used in the National Air and Space Plane project (NASP). The development of such materials is based on study of the mechanisms of oxidation, volatilization, mutual chemical interaction, crack formation and attack by moisture.

The development of unifying thermodynamic and kinetic models of materials corrosion has already contributed to significant progress in several areas and is likely to have much greater impact in the future. The development and application of Pourbaix (pH-Eh) diagrams for the stability of materials over a wide range of environmental conditions, initially used in metal corrosion, has been shown in this Symposium to provide a firm basis for the safe use of borosilicate glasses as immobilization media for high level nuclear waste over periods of 10^3-10^5 years in geologic repository. At the same time, the use of stability diagrams in the identification of stable phases which appear in natural minerals has made it possible to analyze the effects of acid rain and to lay the ground for combating corrosion effects, e.g., in the restoration of the Statue of Liberty. Systematic studies of the reactivity of glass surfaces have given rise to identification of regions of glass composition which are sufficiently reactive to bond to human bone and soft tissue yet durable enough to resist dissolution in the body and are consequently suitable for use in implants.

An area where fundamental mechanistic studies have resulted in major improvements in safety and large cost savings is stress corrosion in ceramics, glasses, and metals. Beneficial results of basic crack propagation studies were reported in this
Symposium in applications as diverse as surgical implants on one hand and nuclear reactor components on the other.

A joint session with the symposium on "Materials Issues in Art and Archaeology" was held to deal with common approaches to the deterioration of natural, ancient and modern glass.

This was the first symposium on general issues of corrosion and durability to be held by the Materials Research Society. It is hoped that further efforts to bring together researchers who work on the basic mechanisms of corrosion of widely differing types of materials, will continue with beneficial results to the development of corrosion science.

Aaron Barkatt
Ellis D. Verink, Jr.
Leslie R. Smith
Acknowledgments

The editors acknowledge with gratitude the financial support for this symposium provided by the Defense Advanced Research Projects Agency, through the courtesy of Dr. P.A. Parrish, and the Air Force Office of Scientific Research, through the courtesy of Dr. J.W. Hager. The editors are very grateful to the Conference Chairmen, D.E. Clark, C.W. Draper and C.T. Liu, and to the members of the MRS staff who gave us their full support. The editors would like to express their appreciation to the session chairs who organized the individual sessions and refereed the manuscripts: B.E. Wilde, R.J. Diefendorf, R. Van Konynenburg, C.M. Jantzen, F.P. Ford, R.H. Doremus, I. Aggarwal, C. Stevenson, and M.W. Kendig.

Very special thanks are due to Stephanie Ann Olszowka who acted as Executive Assistant and Proceedings Coordinator throughout this endeavor. Her dedicated effort was invaluable throughout all of the stages of the organization of the symposium and the proceedings, including the Call for Papers, collation of the abstracts, handling of the manuscripts, and the refereeing process.
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Editors/Authors</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Scientific Basis for Nuclear Waste Management IV</td>
<td>S. V. Topp, 1982</td>
<td>0-444-00699-0</td>
</tr>
<tr>
<td>7</td>
<td>Metastable Materials Formation by Ion Implantation</td>
<td>S. T. Picraux, W. J. Choyke, 1982</td>
<td>0-444-00692-3</td>
</tr>
<tr>
<td>8</td>
<td>Rapidly Solidified Amorphous and Crystalline Alloys</td>
<td>B. H. Kear, B. C. Giessen, M. Cohen, 1982</td>
<td>0-444-00698-2</td>
</tr>
<tr>
<td>10</td>
<td>Thin Films and Interfaces</td>
<td>P. S. Ho, K.-N. Tu, 1982</td>
<td>0-444-00774-1</td>
</tr>
<tr>
<td>11</td>
<td>Scientific Basis for Nuclear Waste Management V</td>
<td>W. Lutze, 1982</td>
<td>0-444-00725-3</td>
</tr>
<tr>
<td>12</td>
<td>In Situ Composites IV</td>
<td>F. D. Lemkey, H. E. Cline, M. McLean, 1982</td>
<td>0-444-00726-1</td>
</tr>
<tr>
<td>15</td>
<td>Scientific Basis for Nuclear Waste Management VI</td>
<td>D. G. Brookins, 1983</td>
<td>0-444-00780-6</td>
</tr>
<tr>
<td>18</td>
<td>Interfaces and Contacts</td>
<td>R. Ludeke, K. Rose, 1983</td>
<td>0-444-00820-9</td>
</tr>
<tr>
<td>19</td>
<td>Alloy Phase Diagrams</td>
<td>L. H. Bennett, T. B. Massalski, B. C. Giessen, 1983</td>
<td>0-444-00809-8</td>
</tr>
<tr>
<td>20</td>
<td>Intercalated Graphite</td>
<td>M. S. Dresselhaus, G. Dresselhaus, J. E. Fischer, M. J. Moran, 1983</td>
<td>0-444-00781-4</td>
</tr>
<tr>
<td>21</td>
<td>Phase Transformations in Solids</td>
<td>T. Tsakalakos, 1984</td>
<td>0-444-00901-9</td>
</tr>
<tr>
<td>22</td>
<td>High Pressure in Science and Technology</td>
<td>C. Homan, R. K. MacCrone, E. Whalley, 1984</td>
<td>0-444-00932-9</td>
</tr>
<tr>
<td>23</td>
<td>Energy Beam-Solid Interactions and Transient Thermal Processing</td>
<td>J. C. C. Fan, N. M. Johnson, 1984</td>
<td>0-444-00903-5</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

Tungsten and Other Refractory Metals for VLSI Applications, R. S. Blewer, 1986; ISSN 0886-7860; ISBN 0-931837-32-4

Tungsten and Other Refractory Metals for VLSI Applications III, Victor A. Wells, 1988; ISSN 0886-7860; ISBN 0-931837-84-7
