Solid State Ionics
Solid State Ionics

Symposium held November 28-December 2, 1988, Boston, Massachusetts, U.S.A.

EDITORS:

Gholamabbas Nazri
General Motors Research Laboratories, Warren, Michigan, U.S.A.

Robert A. Huggins
Stanford University, Stanford, California, U.S.A.

Duward F. Shriver
Northwestern University, Evanston, Illinois, U.S.A.
Contents

PREFACE xi

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS xii

INTRODUCTION

*EARLY HISTORY OF SOLID STATE IONICS
 T. Takahashi 3

PART I: THEORY

*POLYMERIC ELECTROLYTES AND POLYELECTROLYTES: SALT
 CONCENTRATION AND DOMAIN EFFECTS ON CONDUCTIVITY
 M.A. Ratner, S.D. Druger, and A. Nitzan 13

*MOLECULAR DYNAMICS SIMULATION OF MASS AND CHARGE
 TRANSPORT IN SUPERIONIC CONDUCTORS, AND STRUCTURAL
 CORRELATIONS IN CHALCOGENIDE GLASSES
 P. Vashishta, J.P. Rino, and R.K. Kalia 27

*SOLID ELECTROLYTES: JUMP RELAXATION AND "UNIVERSAL"
 DYNAMIC RESPONSE
 K. Funke 43

HOPPING MODEL FOR THE NON-DEBYE DIELECTRIC RESPONSE IN
 IONIC CRYSTALS
 J.C. Wang and J.B. Bates 57

*NON-RANDOM MIXING AND FAST ION DECOUPLING IN LITHIUM
 CHLOROBORATE SUPERIONIC GLASSES: AN ION DYNAMICS
 COMPUTER SIMULATION STUDY
 R. Eyed, J. Kieffer, and C.A. Angell 63

*AC AND DC STUDIES OF NON-EXPONENTIAL RELAXATION
 PROCESSES IN SUPERIONIC CONDUCTORS: CORRELATION OF
 CONDUCTIVITY AND NMR STUDIES
 C.A. Angell and S.W. Martin 73

*MACROSCOPIC AND MICROSCOPIC ASPECTS OF ELECTRON HOPPING
 IN MIXED CONDUCTOR MEMBRANES USING THE QUASI-FERMI LEVEL
 R.P. Buck 83

*HOPPING TRANSPORT IN DISORDERED SYSTEMS: CORRELATION
 EFFECTS
 W.A. Curtin and H. Scher 89

THEORY OF METAL-SOLID ELECTROLYTE INTERFACE
 S.I. Kim and M. Seidl 95

*DISTRIBUTION AND TRANSPORT OF CHARGE CARRIERS IN HETERO-
 GENEOUS ELECTROLYTE SYSTEMS
 J. Maier 101

*Invited Paper

© in this web service Cambridge University Press
Cambridge University Press
978-1-107-41082-4 - Materials Research Society Symposium Proceedings: Volume 135:
Solid State Ionics
Editors: Gholamabbas Nazri, Robert A. Huggins and Duward F. Shriver
Frontmatter
More information

Cambridge University Press
978-1-107-41082-4 - Materials Research Society Symposium Proceedings: Volume 135:
Solid State Ionics
Editors: Gholamabbas Nazri, Robert A. Huggins and Duward F. Shriver
Frontmatter
More information

Cambridge University Press
978-1-107-41082-4 - Materials Research Society Symposium Proceedings: Volume 135:
Solid State Ionics
Editors: Gholamabbas Nazri, Robert A. Huggins and Duward F. Shriver
Frontmatter
More information

Cambridge University Press
978-1-107-41082-4 - Materials Research Society Symposium Proceedings: Volume 135:
Solid State Ionics
Editors: Gholamabbas Nazri, Robert A. Huggins and Duward F. Shriver
Frontmatter
More information
ELECTRICAL PHENOMENA IN MEMBRANES
V. Pechorin

PART II: MATERIALS AND TECHNIQUES

PREPARATION, CHARACTERIZATION AND CONDUCTIVITY OF Li₃N, Li₃P and Li₃As
G. Nazri

*IONIC PROPERTIES OF OXIDE GELS
J. Livage, P. Barboux, M. Nabavi, and P. Judeinstein

*PROPERTIES OF ELECTROLYTE AND ELECTRODE FILMS PREPARED
BY RF AND DC MAGNETRON SPUTTERING

*INTRINSIC FAST OXYGEN IONIC CONDUCTIVITY IN THE
Gd₂(ZrₓTiy₁₋ₓ)₂O₇ AND Y₂(ZrₓTiy₁₋ₓ)₂O₇ PYROCLORHE SYSTEMS
P.K. Moon and H.L. Tuller

*HYDROGEN-TRANSPORTING MIXED CONDUCTORS
M. Schreiber and R.A. Huggins

*COMPOSITE POLYPHASE ELECTROCHEMICAL CELL COMPONENTS
S. Crouch-Baker and R.A. Huggins

STRUCTURAL CHANGES IN FAST ION CONDUCTING CHLORIDE
DOPED POTASSIUM BORATE GLASSES
F.A. Fusco, M. Massot, M. Oueslati, E. Haro, H.L. Tuller, and M. Balkanski

RAMAN SPECTROSCOPY AND STRUCTURAL DISORDER IN
Gd₂(ZrₓTiy₁₋ₓ)₂O₇
M. Oueslati, M. Balkanski, P.K. Moon, and H.L. Tuller

*SPECTROSCOPIC STUDIES OF FAST ION CONDUCTING
HALOGENOBORATE GLASSES
M. Massot, E. Haro, M. Oueslati, and M. Balkanski

*SPECTROSCOPIC STUDIES OF A SUPERIONIC PHASE
CRYSTAL: LITHIUM SULFATE
R. Frech

*STUDYING IONIC CONDUCTIVITY WITH DIFFRACTION TECHNIQUES:
AN APPLICATION TO LaF₃
A. Belzner and H. Schulz

RELATIONS BETWEEN STRUCTURE AND IONIC CONDUCTIVITY OF
SOME CRISTOBALITE-RELATED COMPOUNDS
S. Frostang, J. Grins, and M. Nygren

NEUTRON DIFFRACTION IN SUPERIONIC GLASSES
L. Borjesson, M. Eilmroth, L.M. Torell, and W.S. Howells

*Invited Paper
STRUCTURAL INVESTIGATIONS ON SCANDIUM SUBSTITUTED NASICONS. ORDER DISORDER EFFECTS 251
A. Clearfield, P.G. Hinson, P.R. Rudolf, and P.J. Squattrito

SOLID STATE NMR STUDIES OF IONICALLY CONDUCTIVE NON-OXIDE CHALCOGENIDE GLASSES 259
H. Eckert, Z. Zhang, and J.H. Kennedy

IN-SITU NMR STUDIES OF LITHIUM INTERCALATED ELECTRODE MATERIALS INSIDE ALL-SOLID-STATE ELECTROCHEMICAL CELLS 265
Y. Chabre

ELECTRICAL RELAXATION STUDIES IN FLUORITE OXIDES 271
P. Sarkar and P.S. Nicholson

DETERMINATION OF TRANSPORT PROPERTIES FOR SOLID IONIC CONDUCTORS 281
R. Pollard and T. Comte

THE ELECTRICAL CONDUCTIVITY MEASUREMENTS OF SOLID ELECTROLYTE, CuZr2(PO4)3 287
T.J. Lee, P.C. Yao, S.E. Hsu, and D.J. Fray

DEFECT STRUCTURE AND ION TRANSPORT IN PbFCl 295
M. Saiful Islam

ION CONDUCTIVITY OF NASICON CERAMICS: EFFECTS OF TEXTURE AND DOPING WITH B2O3 AND Al2O3 301
J.W. Hoj and J. Engel1

ULTRASONIC ATTENUATION PEAKS NEAR THE DIFFUSE TRANSITION TEMPERATURE IN SOLID ELECTROLYTES WITH FLUORITE STRUCTURE 309
M.O. Manasreh, D.O. Pederson, and T.S. Aurora

PART III: POLYMER ELECTROLYTES

*PEO-BASED POLYMER ELECTROLYTES CONTAINING DIVALENT CATIONS 319
G.C. Farrington, H. Yang, and R. Huq

*POLYMER ALKALI-METAL POLYIODIDES WITH VARIABLE IONIC AND ELECTRONIC CONDUCTIVITIES 325
H-C Zur Loye, L.J. Lyons, L.C. Hardy, J.S. Tonge, and D.F. Shriver

POLYMER ELECTROLYTES WITH EXCLUSIVELY CATIONIC CONDUCTIVITY 337
H. Liu, Y. Okamoto, T. Skotheim, Y.S. Pak, S.G. Greenbaum, and K.J. Adamic

SINGLE-ION CONDUCTING POLYMER ELECTROLYTES: SYNTHESIS AND CHARACTERIZATION 343
K.E. Doan, S. Ganapathiappan, K. Chen, M.A. Ratner, and D.F. Shriver

*Invited Paper
LITHIUM ELECTROCHEMICAL INVESTIGATIONS OF CRYSTALLINE LAYERED COMPOUNDS
C. Julien, I. Samaras, I. Saikh, and M. Balkanski

PLASMON-PHONON COUPLING IN Li INTERCALATED InSe
P.A. Burret, C. Julien, M. Jouanne, and M. Balkanski

MICROSTRUCTURES OF THE ELECTRON-BEAM EVAPORATED InSb THIN FILMS
D.J. Cheng, S. Yeh, and G.F. Chi

STRUCTURAL AND ELECTRICAL CHARACTERISTICS OF THE THERMALLY EVAPORATED InSb THIN FILMS
S. Yeh, D.J. Cheng, G.F. Chi, and M.T. Chu

LITHIUM INTERCALATION IN PEROVSKITE AND HEXAGONAL TUNGSTEN BRONZE DERIVATIVES
C. Delmas, A. Nadiri, G. Le Flem, S.H. Chang, J.P. Chaminade, and M. Menetrier

PART V: \(\beta \)-ALUMINA

*STRUCTURE AND STABILITY OF \(\beta \)-ALUMINA TYPE PHASES
A. Petric, J. Kirchnerova, C.W. Bale, and A.D. Pelton

ANALYSIS OF TRANSPORT PHENOMENA OCURRING IN ELECTRON-IRRADIATED SODIUM \(\beta \)-ALUMINA CRYSTALS
G. Mariotto and A. Miotello

STRUCTURAL DESIGN AND SYNTHESIS OF \(\text{H}_3\text{O}^+\)-\(\beta \)-Al\(_2\text{O}_3 \) AND \(\text{NH}_4^+-\beta \)-Al\(_2\text{O}_3 \) POLYCRYSTALS
P.S. Nicholson

COMPLEX DEFECTS IN LANTHANIDE ION-EXCHANGED BETA ALUMINAS
P. Valerga, X. Jin, F. Vozzo, and W.L. Roth

ION-IMPLANTED SUPERIONIC CLUSTERS
Y. Feng, P.W. Wang, and W.L. Roth

PART VI: APPLICATION

*SODIUM SULFUR BATTERY ACCOMPLISHMENTS AND REMAINING PROBLEMS
W. Fischer

SODIUM/\(\beta \)-ALUMINA/ORGANOSULFUR BATTERIES OPERATING AT INTERMEDIATE TEMPERATURES
S.J. Visco and L.C. De Jonghe

*SOLID STATE PRIMARY & SECONDARY BATTERIES & COMPOSITE ELECTRODE THEORY
J.R. Akridge, S.D. Jones, and H. Vourlis

*Invited Paper
*DEVELOPMENTS IN RECHARGEABLE MnO₂ ELECTRODES FOR LITHIUM BATTERIES
 M.M. Thackeray

PREPARATION OF THIN FILM SOLID-STATE ELECTROCHROMIC DEVICE BY SPRAY PYROLYSIS TECHNIQUE
 T.J. Lee, G.T.K. Fey, W.J. Lin, P.C. Yao, and S.E. Hsu

HIGH TEMPERATURE HUMIDITY SENSING MATERIALS
 P.P. Tsai, S. Tanase, and M. Greenblatt

PART VII: ABSTRACTS OF UNPUBLISHED PAPERS

*ENHANCED IONIC CONDUCTIVITY IN COMPOSITE ELECTROLYTES
 N.J. Dudney

ELECTROCHEMICAL STUDIES OF THE MIXED-CONDUCTOR SYSTEM
 YBa₂Cu₃O₇₋ₓ
 G.F. Holland, S.L. Russek, A.M. Stacy, and J.N. Michaels

*SURFACE MODIFICATION OF SOLID ELECTROLYTES FOR ADVANCED CHEMICAL SENSORS
 W. Weppner

*THIN FILM TECHNOLOGY IN SOLID STATE IONICS
 J. Schoonman

AUTHOR INDEX

SUBJECT INDEX
Preface

Solid state ionics has grown rapidly during the last decade and became an important area in solid state chemistry, solid state physics, electrochemistry and materials science. Several new materials with unique properties and a few solid state devices have been introduced. Many new ideas toward micro and macro-devices are being tested in research laboratories around the world. Materials modification and device fabrication in the area of solid state ionics require knowledge from many disciplines and provide diverse research opportunities.

The aim of this proceedings volume is to introduce the interdisciplinary nature of the solid state ionics and diverse research opportunities in this field to the communities of solid state chemists, solid state physicists, electrochemists and materials scientists. This volume includes invited and contributed papers on fundamentals, materials, techniques and applications of solid state ionics presented at the 1988 MRS Fall Meeting in Boston. The symposium was the first on this topic to be held at an MRS meeting. It was a truly international forum on fast ionic transport and related phenomena in materials. The symposium included 24 invited and 61 contributed papers, of which 47, or 55%, were from outside the United States. The attendance and active interest in this symposium showed the dynamic character of the general interest in ionically conductive solids and mixed conductors, and the transition of this area from one of pure science into one with great technological opportunities.

The first section of this proceedings volume deals with theoretical treatments of ion transport in solids. Several approaches, such as molecular dynamics simulation, percolation theory, relaxation in solid electrolytes and ionic motion in solids, are presented. The second part of the book focuses on materials and techniques. The mechanism of ion transport in glassy electrolytes and the large enhancement in ionic conductivity in the presence of dispersed particles are discussed. In the context of materials characterization, the use of both in-situ and ex-situ techniques, such as x-ray and neutron diffraction, EXAFS, IR and Raman spectroscopy, NMR, ultrasonic attenuation, XPS, TEM, impedance spectroscopy and electrochemical techniques, for the investigation of both structural and dynamic aspects of materials with unusual mass transport properties are discussed. The third part of the book deals with ionically conductive polymers. Several new polymers electrolytes are introduced and the mechanisms of ion transport in this new class of electrolytes are discussed. The polymer dynamics and single ion conductive polymers are included in this part.

The fourth part of this book deals with low dimensional layered and skeletal compounds, the principle features of insertion phenomena and composition-driven phase transformations. The structure-property relationships of mixed conducting chalcogenides are discussed from materials science, chemistry and physics viewpoints. The mixed-conducting copper oxide
bronzes, some of which are interesting high temperature superconductors, are among the materials families of interest in this connection. The fifth part introduces the science and technology of 8-aluminas from structural, ion transport, and chemical reactivity viewpoints. Finally, the sixth part covers recent advances in a number of applicational areas, including solid state lithium batteries, the high power sodium-poly sulfide and new sodium-transition metal chloride battery systems, solid state sensors, and electrochromic materials and devices. Applications, from solid electrolyte batteries in electric vehicles to integrated circuits and the fabrication of thin film devices, such as batteries and microsensors, are discussed.

It would be difficult to list all the people who have helped, directly or indirectly in this work, but we sincerely thank Drs. J.R. Akridge, C.A. Angell, M. Balkanski, G.C. Farrington, J.B. Goodenough, P. Hagemmuller, J. Livage, J. Rouxel, J.M. Tarascon, K.C. Taylor, M. Thacheray, L.M. Torell, H.L. Tuller, P. Vashishta, and W. Weppner for their illuminating discussions. We would like to express special thanks to professor Mark A. Ratner for many discussions concerning the theoretical materials as well as organization of the symposium. Mrs. Dorothy A. Woods is owed a special debt of thanks for excellent secretarial help and for hours of painstaking typing.

We are grateful for the financial support from the Office of Naval Research and Innovative Technology, Inc.

March, 1989

Gholamabbas Nazri
Robert A. Huggins
Duward F. Shriver
Tungsten and Other Refractory Metals for VLSI Applications, R. S. Blewer, 1986; ISSN 0886-7860; ISBN 0-931837-32-4

Tungsten and Other Refractory Metals for VLSI Applications III, Victor A. Wells, 1988; ISSN 0886-7860; ISBN 0-931837-84-7

