Thin Film Structures and Phase Stability
Thin Film Structures and Phase Stability

Symposium held April 16-17, 1990, San Francisco, California, U.S.A.

EDITORS:

B.M. Clemens
Stanford University, Stanford, California, U.S.A.

W.L. Johnson
California Institute of Technology, Pasadena, California, U.S.A.
Contents

PREFACE xi

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS xii

PART I: INTERFACE REACTIONS, AMORPHOUS PHASE FORMATION, AND PHASE SEPARATION

DIFFUSIONAL ASYMMETRY IN AMORPHOUS ALLOYS: IMPLICATIONS FOR INTERFACIAL REACTIONS 3
A.L. Greer, K. Dyrbye, L.-U. Aaen Andersen, R.E. Somekh, J. Böttiger, and J. Janting

A PHASE DIAGRAM APPROACH FOR PREDICTING REACTIONS IN Al/TiN(-NITRIDE) THIN-FILM SYSTEMS 15
A.S. Bhansali, I.J.M.M. Raaijmakers, R. Sinclair, A.E. Morgan, B.J. Burrow, and M. Arst

DECAGONAL Al₃Pd PHASE FORMATION IN LATERAL AND CONVENTIONAL THIN FILM Al/Pd DIFFUSION COUPLES 21
B. Blanpain and J.W. Mayer

TRACER DIFFUSION IN AMORPHOUS Ni-Zr ALLOYS 27
H.-M. Wu, H. Hahn, and R.S. Averback

Al-Ge PHASE SEPARATION DURING VAPOR DEPOSITION 33
C.D. Adams, M. Atzmon, Y.-T. Cheng, and D.J. Srolovitz

Cu-Cr MULTILAYERS AND METASTABLE ALLOY FILMS 39
A.P. Payne and B.M. Clemens

STABILITY AND DECOMPOSITION OF IV-VI SEMICONDUCTOR FILMS 47

ANOMALOUS SMALL ANGLE X-RAY SCATTERING STUDIES OF METAL-GERMANIUM ALLOYS 53
Marybeth Rice, Soichi Wakatsuki, and Arthur Bienenstock

PART II: INTERFACE REACTIONS AND METASTABLE PHASE FORMATION IN METAL-SEMICONDUCTOR SYSTEMS

KINETICS AND THERMODYNAMICS OF AMORPHOUS SILICIDE FORMATION IN METAL/AMORPHOUS-SILICON MULTILAYER THIN FILMS 61
C.V. Thompson, L.A. Clevenger, R. DeAvillez, E. Ma, and H. Miura

*Invited Paper
STRUCTURE AND THERMODYNAMICS OF AMORPHOUS Ti-Si PRODUCED BY SOLID-STATE INTERDIFFUSION
Karen Holloway, Pierre Moine, Jacques Delage, Rüdiger Bormann, Linda Capuano, and Robert Sinclair

FORMATION OF AMORPHOUS INTERLAYERS BY SOLID-STATE DIFFUSION IN REFRACTORY METAL/SILICON SYSTEMS
J.Y. Cheng, M.H. Wang, and L.J. Chen

KINETIC AND THERMODYNAMIC ASPECTS OF PHASE EVOLUTION IN Ti/a-Si MULTILAYER FILMS
E. Ma, L.A. Clevenger, C.V. Thompson, and K.N. Tu

FORMATION AND GROWTH OF AMORPHOUS PHASES BY SOLID-STATE REACTIONS BETWEEN Co THIN-FILMS AND III-V COMPOUND SEMICONDUCTORS
F.Y. Shiau and Y.A. Chang

MICROSTRUCTURE AND STABILITY COMPARISON OF NANOMETER PERIOD W/C, WC/C, AND Ru/C MULTILAYER STRUCTURES
Tai D. Nguyen, Ronald Gronsky, and Jeffrey B. Kortright

INVESTIGATIONS OF CuInSe2 THIN FILMS AND CONTACT

ROOM TEMPERATURE OXIDATION OF SILICON CATALYZED BY Cu3Si
J.M.E. Harper, A. Charai, L. Stolt, F.M. d’Heurle, and P.M. Fryer

CRYSTAL NUCLEATION IN AMORPHOUS Si THIN FILMS DURING ION IRRADIATION
James S. Im and Harry A. Atwater

CHARACTERIZATION OF SILICON AND INDIUM REDISTRIBUTION IN InGaAs/InAs/GaAs(100) HETEROEPITAXIAL LAYERS FABRICATED USING PULSED LASER MELTING
Y. Chang, T.W. Sigmon, A.F. Marshall, and K.H. Weiner

PART III: POSTER SESSION: THIN FILM STRUCTURES AND PHASE STABILITY

PERCOLATION STRUCTURE OBSERVED IN EVAPORATED Nd-Fe-B FILMS
C.H. Shang, B.X. Liu, and H.D. Li

BORON DIFFUSION IN BULK COBALT DISILICIDE
STRUCTURE AND PHASE TRANSFORMATIONS IN THERMOELASTIC Ni(1-x)Ti(x) THIN FILMS PREPARED BY D.C. MAGNETRON SPUTTERING
L. Chang, C. Hu-Simpson, D.S. Grummon, W. Pratt, and R. Loloee

OXIDATION KINETICS OF METASTABLE ELECTRODEPOSITED AND SPUTTERED NICKEL THIN FILMS VIA THERMOGRAVIMETRIC ANALYSIS
Ann C. Herrmann, William E. Brower, Jr., and Shashi Lalvani

LOW TEMPERATURE DEPOSITED HIGH QUALITY ITO FILMS PREPARED BY E-BEAM EVAPORATION
C.S. Chang, J.C. Wang, and L.C. Kuo

MORPHOLOGY OF E-BEAM EVAPORATED Cr THIN FILMS
Y. Cheng, M.B. Stearns, and David J. Smith

MICROSTRUCTURE AND STABILITY OF TiB$_2$ AND Cu MULTILAYERS
S.N. Basu, K.M. Hubbard, J-P. Hirvonen, T.E. Mitchell, and M. Nastasi

COMPOSITION AND STRUCTURE CHARACTERIZATION OF Wx FILMS PRODUCED BY RF REACTIVE SPUTTERING
Dongliang Lin (T.L. Lin), Benda Yan, and Weili Yu

LASER DEPOSITION OF MOLYBDENUM OXIDE THIN FILMS FROM ORGANOMETALLIC PRECURSORS
Kurt A. Olson and Glenn L. Schrader

SXES STUDY OF TRANSITION METAL SILICIDE FILMS AND THEIR CONTACTS TO SEMICONDUCTORS
H. Watabe, M. Iwami, M. Hirai, M. Kusaka, M. Kubota, H. Nakamura, K. Kawai, H. Soezima, and F. Akao

COMPUTER SIMULATION STUDY OF THIN FILM FORMATION PROCESS
Yasushi Sasajima, Satoru Ozawa, and Ryoichi Yamamoto

INVESTIGATION INTO THE THIN-FILM FABRICATION OF INTERMETALLIC NiTi
A. Peter Jardine, Hong Zhang, and Lysa D. Wasielewski

CHEMICAL VAPOR DEPOSITION OF BINARY METAL GERMANIDES
M.J. Hampden-Smith, J. Garvey, D. Lei, and J.C. Huffman

CHEMICAL VAPOR DEPOSITION OF COPPER FROM METAL-ORGANIC COPPER(I) PHOSPHINE COMPLEXES
H.-K. Shin, M.J. Hampden-Smith, T.T. Kodas, E.N. Duesler, J.D. Farr, and M. Paffett

ON THE FORMATION OF AMORPHOUS AND METASTABLE PVD-COATINGS
O. Knotek, A. Barimani, F. Löffler

CORRELATING CVD PROCESS PARAMETERS AND FILM PROPERTIES
D.K. Chow
PART IV: EPITAXY AND MULTILAYER STRUCTURE I

*MBE GROWTH OF ARTIFICIALLY-LAYERED MAGNETIC METAL STRUCTURES ON SEMICONDUCTORS
R.F.C. Farrow and C.H. Lee

MAGNETIC ORDERING OF Tb OVERLAYERS ON Ni(111)
D. LaGraffe, A. Miller, P.A. Dowben, and M. Onellion

EPITAXY OF IRON ON VARIOUS RUTHENIUM SURFACES: OCCURRENCE OF A NEW Fe PHASE
Michel Piecuch, Marie Françoise Ravet, and Marc Maurer

EPITAXY OF Ni ON Si(111) BY ION BEAM ASSISTED DEPOSITION
K.S. Grabowski and R.A. Kant

STRUCTURAL AND ELECTRONIC CHANGES IN THE GROWTH OF MERCURY OVERLAYERS ON Cu(001): A HELIUM BEAM SCATTERING, LEED AND ARPES STUDY

THE EPITAXIAL GROWTH OF COPPER ON THE (111) SURFACE OF SILICON
F.J. Walker, J.R. Conner, and R.A. McKeef

SCANNING TUNNELING MICROSCOPY OF PLATINUM CLUSTERS ON HOP-GRAPHITE
Klaus Sattler, Ulrich Mueller, Jie Xhie, Narayana Venkateswaran, and Gargi Raina

EPITAXY OF TiO₂ THIN FILM ON SAPPHIRE BY MOCVD
H.L.M. Chang, H. You, J.C. Parker, and D.J. Lam

X-RAY DOUBLE CRYSTAL DIFFRACTION CHARACTERIZATION OF EPITAXIAL MAGNETIC TRANSITION METAL DIFLUORIDES
M. Lui, A.R. King, V. Jaccarino, R.F.C. Farrow, and S.S.P. Parksins

EPITAXIAL GRAIN GROWTH AND ORIENTATION METASTABILITY IN HETEROEPITAXIAL THIN FILMS
J.A. Floro and C.V. Thompson

SOLID PHASE EPITAXY OF STRAINED Si₁₋ₓGeₓ ALLOYS FORMED BY HIGH-DOSE ION IMPLANTATION INTO <001> SILICON
D.J. Howard, D.C. Paine, and N.G. Stoffel

PART V: EPITAXY AND MULTILAYER STRUCTURE II

ATOMISTIC STRUCTURE AND COMPOSITION OF A Ag/Ni INTERPHASE BOUNDARY
P. Gumbsch, M.S. Daw, S.M. Foiles, and H.P. Fischmeister

*Invited Paper
ON GEOMETRIC MODELS FOR INTERPHASE BOUNDARIES
Hans J. Fecht
293

MOLECULAR DYNAMICS STUDY OF (001) AND (111) THIN FCC FILMS
F.H. Streitz, K. Sieradzki, and R.C. Cammarata
299

STRUCTURES OF SILVER/CHROMIUM METALLIC SUPERLATTICE
Takeo Kaneko, Kentaro Kyuno, Osamu Niikura, Shigeki Hara, and Ryoichi Yamamoto
305

STRUCTURES OF SILVER/COBALT METALLIC SUPERLATTICE AND CHANGES DUE TO ANNEALING
T. Kingetsu, K. Sakai, T. Kaneko, A. Yamaguchi, and R. Yamamoto
309

INTERFACIAL COMPOSITION AND STRUCTURE IN Pt/Ni AND Pt/Nb MULTILAYER FILMS
J.A. Bain, B.M. Clemens, and S. Brennan
315

STRUCTURAL AND ELASTIC PROPERTIES OF Hf/Zr MULTILAYER THIN FILMS
W.J. Meng, G.L. Eesley, K. Svinarich, and G.P. Meisner
321

DETERMINATION OF THE STRAIN SOURCE IN Mo/Ni MULTILAYERS
L.J. Chyung, B.M. Clemens, and S. Brennan
327

ATOM PROBE AND HREM CHARACTERIZATION OF TRANSITION METAL MULTILAYERS
A. Cerezo, M.G. Hetherington, and A.J.K. Petford-Long
333

AUTHOR INDEX
339

SUBJECT INDEX
341

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS
345
Preface

Symposium J, Thin Film Structures and Phase Stability, focused on the ability which thin film deposition and reaction techniques give to engineer materials on the atomic scale. The kinetic and thermodynamic phenomenon in these processes can be used to produce materials with unusual, often metastable, chemical and structural environments. Artificially produced multilayer structures often have unusual conditions of strain, chemical proximity, structure or disorder. The symposium focused on thin film structures, with emphasis on situations where thin film processing allows formation of metastable phases, highly strained materials, and novel solid state reaction phenomenon.

This was a two day symposium, with invited and contributed papers as well as an evening poster session. The first day concentrated on solid state reactions with invited talks by Lindsay Greer from the University of Cambridge, King Tu from IBM Yorktown Heights, and Carl Thompson from MIT. Professor Greer observed that the diffusion of Zr is 10 times slower than that of Ni in amorphous NiZr, confirming that Ni is the mobile species in solid state amorphization. King Tu explained the formation of metastable phases in thin film diffusion couples by the concept of ‘maximum rate of free energy change.’ Carl Thompson discussed the formation of amorphous phases in metal silicon systems, and discussed a two stage nucleation and growth process. The contributed papers also generated discussion on topics such as phase segregation, amorphous silicide formation, room temperature oxidation of silicon, and nucleation during ion beam irradiation. There was a lively poster session on Monday evening with papers on a wide variety of topics covering the general area of thin film science.

The second day had sessions Epitaxy and Multilayer Structure I and II, with the morning focusing on epitaxial and heteroepitaxial growth of thin films. Robin Farrow of IBM Almaden led off with an invited talk where he reported on some remarkable success he and his co-workers have had in growing single crystal epitaxial thin films and superlattices of silver, iron, cobalt and platinum on GaAs. This was followed by several talks on epitaxial growth and characterization. The afternoon focused on interfaces and structure of multilayered materials. A session on possible stress origins of the supermodulus effect was highlighted by lively interaction from the audience. Most of the papers presented at the symposium are presented in this book.

Bruce M. Clemens
William L. Johnson
November 1990

Earlier Materials Research Society Symposium Proceedings listed in the back.