Intermetallic Matrix Composites
Contents

PREFACE xi

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS xii

PART I: MODELING OF INTERMETALLIC MATRIX COMPOSITES

MODELS FOR THE STRENGTH OF DUCTILE MATRIX COMPOSITES Gang Bao, Francesco Genna, John W. Hutchinson, and Robert M. McMeeking 3

ON THE FLOW AND CREEP STRENGTH OF POWER LAW MATERIALS CONTAINING RIGID REINFORCEMENTS Ming Y. He 15

MICROMECHANICAL MODEL OF CRACK GROWTH IN FIBER REINFORCED BRITTLE MATERIALS Asher A. Rubinstein and Kang Xu 23

PART II: PROCESSING OF INTERMETALLIC MATRIX COMPOSITES

INNOVATIVE PROCESSING TECHNIQUES FOR INTERMETALLIC MATRIX COMPOSITES N.S. Stoloff and D.E. Alman 31

DUCTILE PHASE TOUGHENING OF BRITTLE INTERMETALLICS D.L. Anton and D.M. Shah 45

REACTION SINTERING OF MOLYBDENUM DISILICIDE BASED COMPOSITES Martin W. Weiser, Sherisse R. Smelser, and John J. Petrovic 53

EFFECT OF THERMOMECHANICAL TREATMENTS ON SOLIDIFICATION INHOMOGENEITY IN INGOT METALLURGY GAMMA TITANIUM ALUMINIDES J.D. Bryant, S.L. Semiatin, J.R. Maisano, D.T. Winter, and A.R.H. Barrett 59

INTERMETALLIC MATRIX COMPOSITES BY PHYSICAL VAPOR DEPOSITION Dallis A. Hardwick and Richard C. Cordi 65

TAILORED MICROSTRUCTURES OF NIQUIUM-NIOBIUM SILICIDES BY PHYSICAL VAPOR DEPOSITION Rabi S. Bhattacharya, A.K. Rai, M.G. Mendiratta, and Y.T. Cheng 71

REACTIVE SYNTHESIS OF NbAl3 MATRIX COMPOSITES L. Lu, Y.S. Kim, A.B. Gokhale, and R. Abbaschian 79

*Invited Paper

© in this web service Cambridge University Press www.cambridge.org
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLIDIFICATION PROCESSING ROUTES TO HIGH ASPECT RATIO REINFORCEMENTS IN TiAl</td>
<td>89</td>
</tr>
<tr>
<td>AXIAL ALIGNMENT OF SHORT-FIBER TITANIUM ALUMINIDE COMPOSITES BY DIRECTIONAL SOLIDIFICATION</td>
<td>97</td>
</tr>
<tr>
<td>S.L. Kampe, G.H. Swope, and L. Christodoulou</td>
<td></td>
</tr>
<tr>
<td>SOLIDIFICATION PROCESSING OF NbC0.5 ALLOYS</td>
<td>105</td>
</tr>
<tr>
<td>D.J. Thoma and J.H. Perepezko</td>
<td></td>
</tr>
<tr>
<td>THE EFFECTS OF COOLING RATE UPON XD™ TiAl WELD MICROSTRUCTURE</td>
<td>113</td>
</tr>
<tr>
<td>Erica Robertson, Mary Ann Hill, and Ricardo B. Schwarz</td>
<td></td>
</tr>
<tr>
<td>PART III: MICROSTRUCTURE/PROPERTY RELATIONSHIPS OF INTERMETALLIC MATRIX COMPOSITES</td>
<td></td>
</tr>
<tr>
<td>SiC REINFORCED-MoSi2 ALLOY MATRIX COMPOSITES</td>
<td>123</td>
</tr>
<tr>
<td>J.J. Petrovic, R.E. Honnell, and A.K. Vasudevan</td>
<td></td>
</tr>
<tr>
<td>Ta AND Nd REINFORCED MoSi1.5</td>
<td>131</td>
</tr>
<tr>
<td>David H. Carter and Pátrick L. Martin</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT OF MoSi1.5-BASED COMPOSITES</td>
<td>139</td>
</tr>
<tr>
<td>J.-M. Yang and S.M. Jeng</td>
<td></td>
</tr>
<tr>
<td>MICROSTRUCTURES AND MECHANICAL PROPERTIES OF NiAl+Mo IN-SITU EUTECTIC COMPOSITES</td>
<td>147</td>
</tr>
<tr>
<td>P.R. Subramanian, M.G. Mendiratta, D.B. Miracle, and D.M. Dimiduk</td>
<td></td>
</tr>
<tr>
<td>SURVEY OF EUTECTIC SYSTEMS AS POTENTIAL INTERMETALLIC MATRIX COMPOSITES FOR HIGH TEMPERATURE APPLICATION</td>
<td>155</td>
</tr>
<tr>
<td>S. Mazdiyasni and D.B. Miracle</td>
<td></td>
</tr>
<tr>
<td>MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-Al2O3 COMPOSITES PRODUCED BY HOT EXTRUSION</td>
<td>163</td>
</tr>
<tr>
<td>C.G. McKamey and E.H. Lee</td>
<td></td>
</tr>
<tr>
<td>MICROSTRUCTURE AND MECHANICAL BEHAVIOR OF Ni3Al-MATRIX COMPOSITES</td>
<td>169</td>
</tr>
<tr>
<td>P.C. Brennan, W.H. Kao, S.M. Jeng, and J.-M. Yang</td>
<td></td>
</tr>
<tr>
<td>DUCTILE-PHASE TOUGHENING IN NIOBiUM-NIOBIUM SILICIDE POWDER PROCESSED COMPOSITES</td>
<td>175</td>
</tr>
<tr>
<td>Rama M. Nekkanti and Dennis M. Dimiduk</td>
<td></td>
</tr>
<tr>
<td>DUCTILE-PHASE TOUGHENING OF CrSi WITH CHROMIUM</td>
<td>183</td>
</tr>
<tr>
<td>Joseph W. Newkirk and J. Alan Sago</td>
<td></td>
</tr>
<tr>
<td>DUCTILITY ENHANCEMENT FROM INTERFACE DISLOCATION SOURCES IN A DIRECTIONALLY SOLIDIFIED β+(γ′)Ni-Fe-Al COMPOSITE ALLOY</td>
<td>191</td>
</tr>
<tr>
<td>M. Larsen, A. Misra, S. Hartfield-Wunsch, R. Noebe, and R. Gibala</td>
<td></td>
</tr>
</tbody>
</table>
DISLOCATION MORPHOLOGIES IN TiB₂/NiAl
L. Wang and R.J. Arsenault

DEVELOPMENT OF HIGHLY IMPACT RESISTANT NiAl MATRIX COMPOSITES
Vincent C. Nardone, James R. Strife, and Karl M. Prewo

1300 K COMPRESSIVE PROPERTIES OF A REACTION MILLED NiAl-AlN COMPOSITE
J. Daniel Whittenberger, Eduard Arzt, and Michael J. Luton

CREEP BEHAVIOR AND MICROSTRUCTURE OF XD™ TITANIUM ALUMINIDE
C.R. Feng, H.H. Smith, D.J. Michel, and C.R. Crowe

STRUCTURE/PROPERTY COMPARISONS IN PARTICULATE AND SHORT FIBER γ-BASED TITANIUM ALUMINIDE COMPOSITES
S.L. Kampe, J.A. Clarke, and L. Christodoulou

CONSTANT STRESS CREEP OF XD™ TiAl CONTAINING NITROGEN
Erica Robertson and Patrick L. Martin

THE HIGH TEMPERATURE BEHAVIOUR OF TiAl CONTAINING CARBIDE REINFORCEMENTS

SIMPLE MEASUREMENTS OF TOUGHNESS AND CRACK FORMATION IN SEVERAL INTERMETALLIC-MATRIX COMPOSITE SYSTEMS
Robert L. Fleischer

STRENGTH AND TOUGHNESS OF SINGLE-PHASE AND DUAL-PHASE HIGH-TEMPERATURE INTERMETALLICS
Stephen M. Bruemmer, John L. Brimhall, and Charles H. Henager, Jr.

DETERMINATION OF FIBER/MATRIX INTERFACE MECHANICAL PROPERTIES IN BRITTLE-MATRIX COMPOSITES
Ronald J. Kerans, Paul D. Jero, Triplican A. Parthasarathy, and Amit Chatterjee

THE EFFECT OF NOTCHES ON THE FATIGUE LIFE OF SCS-6/Ti₃Al COMPOSITE
Kenneth R. Bain, Mary Lee Gambone, and Richard D. Zordan

MECHANICAL BEHAVIOR AND FAILURE MECHANISMS OF SCS-6/Ti₃Al COMPOSITES
S.M. Jeng, C.J. Yang, J.-M. Yang, D.G. Rosenthal, and J. Goebel

EFFECT OF XD™ TiB₂ VOLUME FRACTION ON THE MICROSTRUCTURE OF A CAST NEAR-GAMMA TITANIUM ALUMINIDE ALLOY
Donald E. Larsen, Jr., Stephen Kampe, and Leo Christodoulou
INTERFACIAL SHEAR BEHAVIOR OF SAPPHIRE-REINFORCED NiAl COMPOSITES
C.A. Moose, D.A. Koss, and J.R. Hellmann

MICROSTRUCTURE AND INTERFACE BEHAVIOR IN DIFFUSION BONDED Ni3Al+B MATRICES CONTAINING CONTINUOUS Al2O3 FIBERS
C. Lee, D.S. Grummon, and G. Gottstein

PARTICLE-REINFORCED Nb-26at%Ti-48at%A1 COMPOSITES
R.M. Akin, Jr., P.E. McCubbin, and L. Christodoulou

HEAT TREATMENTS AND THERMAL FATIGUE OF SCs-6/ALPHA-2 TITANIUM ALUMINIDE COMPOSITES
Y-W. Kim and J.J. Kleek

INITIAL EVALUATION OF CONTINUOUS FIBER REINFORCED NiAl COMPOSITES
R.D. Noebe, R.R. Bowman, and J.I. Eldridge

FEASIBILITY STUDY OF INTERMETALLIC COMPOSITES
D.M. Shah, D.L. Anton, and C.W. Musson

MICROSTRUCTURAL STUDIES OF ß-NiAl AND ß-Re COMPOSITES PRODUCED BY EUTECTIC SOLIDIFICATION
D.P. Mason, D.C. Van Aken, and J.G. Webber

STUDIES OF TITANIUM ALUMINIDE COMPOSITES CONTAINING METALLIC FIBER/MATRIX INTERFACE LAYERS
C.G. Rhodes, C.C. Bampton, and J.A. Graves

CYCLIC OXIDATION RESISTANCE OF A REACTION MILLED NiAl-AlN COMPOSITE
Carl E. Lowell, Charles A. Barrett, and J. Daniel Whittenberger

HIGH TEMPERATURE OXIDATION OF Ni4Al COMPOSITES
P.F. Tortorelli, J.H. DeVan, C.G. McKamey, and M. Howell

PART IV: COMPATIBILITY OF INTERMETALLIC MATRIX COMPOSITES

*CHEMICAL STABILITY OF FIBER-METAL MATRIX COMPOSITES
J.H. Norman, G.H. Reynolds, and L. Brewer

COMPATIBILITY OF POTENTIAL REINFORCING CERAMICS WITH Ni AND Fe ALUMINIDES
J.A. Moser, M. Aindow, W.A.T. Clark, S. Draper, and H.L. Fraser

CHEMICAL COMPATIBILITY OF HIGH TEMPERATURE INTERMETALLIC COMPOUNDS WITH VARIOUS POTENTIAL REINFORCEMENTS
J.-M. Yang, S.M. Jeng, C.J. Yang, and D.L. Anton

*Invited Paper
PHASE STABILITY OF SIGMA + BETA MICROSTRUCTURES IN THE TERNARY Nb-Ti-Al SYSTEM
D.T. Hoelzer and F. Ebrahim 393

DUCTILE PHASE TOUGHENING OF MoSi₂-CHEMICAL COMPATIBILITY AND FRACTURE TOUGHNESS
L. Xiao, Y.S. Kim, and Reza Abbaschian 399

DECOMPOSITION REACTIONS AND TOUGHENING IN NiAl-Cu ALLOYS
W.P. Allen, J.C. Foley, R.F. Cooper, and J.H. Perepezko 405

REACTION ZONE GROWTH IN Ti-BASE/SiC COMPOSITES
Ann M. Ritter, Ernest L. Hall, and Nathan Lewis 413

OXIDATION OF POWDER PROCESSED NbAl₃ MATRIX COMPOSITES
Paul S. Korinko and D.J. Duquette 423

INTERFACE MODIFICATION FOR FIBER-REINFORCED TITANIUM ALUMINIDE COMPOSITES
Daniel E. Boss and J.M. Yang 429

AUTHOR INDEX 437

SUBJECT INDEX 439

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS 441
Preface

MRS has been a leader in publishing current research results covering the area of intermetallic compound development. Three prior symposia in 1984 (Vol. 39), 1986 (Vol. 81) and 1988 (Vol. 133) were devoted primarily to monolithic ordered systems. The current volume is the first to concentrate on issues particular to intentional multiphase intermetallic systems.

Our intent was to bring together the myriad of disciplines needed to understand the complex processing-microstructure-property relationships in intermetallic matrix composite materials. It may appear to the reader that some of the work reported in this volume does not bear on this question, but it should be remembered that intermetallic compounds have properties similar to both ceramics (at low temperatures) and metals (at high temperatures). Thus the techniques for toughening brittle matrix composites at ambient temperatures as well as those for strengthening ductile matrix composites at elevated temperatures need to be applied to the intermetallic situation. For this reason, the session on microstructure-based modeling of the behavior of intermetallic matrix composites drew heavily on ceramic and metal matrix experience. The session discussing processing was also a mix of ceramic and metallurgical approaches, while stressing novel methods particular to composite microstructures. Thermodynamic compatibility and conventional microstructure-mechanical property studies made up the bulk of the contributed papers as they address a large deficiency in our understanding in this important area.

The breadth of sponsorship reflects the large number of organizations which recognize the need for intermetallic matrix composites. The sponsors were GE Aircraft Engines, Los Alamos National Laboratory, Martin Marietta Laboratories, NASA Lewis Research Center, Office of Naval Research, United Technologies Research Center, and Rockwell Science Center. Their financial support is gratefully acknowledged. In addition, we would like to thank Ms. Joyce Hurlburt for her diligent secretarial support during the meeting and assistance in compiling this proceedings afterward and to the session chairmen and all those who helped review the submitted papers.

D. Anton
P. Martin
D. Miracle
R. McMeeking

May 1990
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

Recent Materials Research Society Symposium Proceedings

Earlier Materials Research Society Symposium Proceedings listed in the back.