Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems
Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems

Symposium held April 28-30, 1992, San Francisco, California, U.S.A.

EDITORS:

A. Peter Jardine
State University of New York at Stony Brook
Stony Brook, New York, U.S.A.

George C. Johnson
University of California, Berkeley
Berkeley, California, U.S.A.

Andrew Crowson
U.S. Army Research Office
Research Triangle Park, North Carolina, U.S.A.

Mark Allen
Georgia Institute of Technology
Atlanta, Georgia, U.S.A.

MATERIALS RESEARCH SOCIETY
Pittsburgh, Pennsylvania
Contents

PREFACE ix

ACKNOWLEDGMENTS xi

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS xii

PART I: FERROELECTRIC THIN FILMS: FABRICATION AND CHARACTERIZATION

FERROELECTRIC THIN FILMS FOR MICROELECTROMECHANICAL DEVICE APPLICATIONS 3

D.L. Polla, W.P. Robbins, T. Tamagawa, and C. Ye

SMART FERROELECTRIC FILMS AND FIBERS; APPLICATIONS IN MICROMECHANICS 11

PIEZOELECTRIC PROPERTIES OF 0-3 CERAMIC/POLAR POLYMER COMPOSITES 25

C. Dias and D.K. Das-Gupta

NON-LINEAR CONSTITUTIVE PROPERTIES OF PIEZOELECTRIC CERAMICS 39

H.C. Cao and A.G. Evans

PHYSICAL, ELECTRICAL, AND PIEZOELECTRIC PROPERTIES OF HOT-FORGED Sr2(NbTa)2O7 CERAMICS 51

Paul A. Fuierer, Tom R. Shrout, and Robert E. Newnham

CHARACTERIZATION OF PULSED LASER DEPOSITED ZINC OXIDE 59

N.J. Ianno, L. McConville, and N. Shaikh

PART II: POLYCRYSTALLINE SILICON

IMPACT, FRICTION, AND WEAR TESTING OF MICROSAMPLES OF POLYCRYSTALLINE SILICON 67

Abraham P. Lee, Albert P. Pisano, and Martin G. Lim

STRESS AND MICROSTRUCTURE IN PHOSPHORUS DOPED POLYCRYSTALLINE SILICON 79

P. Krulevitch, G.C. Johnson, and R.T. Howe

THE EFFECT OF TEMPERATURE AND PRESSURE ON RESIDUAL STRESS IN LPCVD POLYSILICON FILMS 85

D-G. Oei and S.L. McCarthy

ANALYSIS OF MICROFABRICATED TEXTURED MULTICRYSTALLINE BEAMS: I. HOMOGENIZATION APPROACH 91

Dariush Mirfendereski, Mauro Ferrari, and Armen Der Kiureghian

Invited Paper
PART VI: ALTERNATIVE MATERIALS AND APPLICATIONS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRONIC DETERMINATION OF THE MODULUS OF ELASTICITY AND INTRINSIC STRESS OF THIN FILMS USING CAPACITIVE BRIDGES</td>
<td>203</td>
</tr>
<tr>
<td>Sha Wang, Selden Crary, and Khalil Najafi</td>
<td></td>
</tr>
<tr>
<td>*CHARACTERIZATION OF ADHESION IN THIN-FILM MATERIALS BY THE BLISTER TEST</td>
<td>209</td>
</tr>
<tr>
<td>Y.Z. Chu, H.S. Jeong, R.C. White, and C.J. Durning</td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF EIGENSTRESSES FROM CURVATURE DATA</td>
<td>221</td>
</tr>
<tr>
<td>Mauro Ferrari and Marie Weber</td>
<td></td>
</tr>
<tr>
<td>ULTIMATE STRAIN MEASUREMENT OF MICROMACHINED MEMBRANES USING A POTENTIOMETRIC TECHNIQUE</td>
<td>227</td>
</tr>
<tr>
<td>R.C. Goforth, R.K. Ulrich, Y.K. Leong, and G. Zhao</td>
<td></td>
</tr>
<tr>
<td>THEORETICAL CALCULATION FOR THE YOUNG'S MODULUS OF POLY-SI AND a-Si FILMS</td>
<td>233</td>
</tr>
<tr>
<td>Shuwen Guo, Daowen Zou, and Weiyuan Wang</td>
<td></td>
</tr>
<tr>
<td>PART VI: ALTERNATIVE MATERIALS AND APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>*ALTERNATIVE MATERIALS FOR MICRO-ELECTRO-MECHANICAL DEVICE CONSTRUCTION</td>
<td>241</td>
</tr>
<tr>
<td>R.H. Hackett and L.E. Larson</td>
<td></td>
</tr>
<tr>
<td>*A NOVEL PROCESS FOR FABRICATING FORCE SENSORS FOR ATOMIC FORCE MICROSCOPY</td>
<td>253</td>
</tr>
<tr>
<td>M.M. Farooqui and A.G.R. Evans</td>
<td></td>
</tr>
<tr>
<td>ORGANIC CHARGE-TRANSFER COMPLEXES FOR HIGH DENSITY STORAGE USING A MODIFIED SCANNING TUNNELING MICROSCOPE</td>
<td>265</td>
</tr>
<tr>
<td>Shoji Yamaguchi, Carlos A. Valenzuela, and Richard S. Potember</td>
<td></td>
</tr>
<tr>
<td>MICROHEATER MADE OF HEAVILY BORON DOPED SINGLE CRYSTAL SILICON BEAM</td>
<td>271</td>
</tr>
<tr>
<td>Mitsuteru Kimura and Kazuhiro Komatsuzaki</td>
<td></td>
</tr>
<tr>
<td>THIN FILM HEATER ON A THERMALLY ISOLATED MICROSTRUCTURE</td>
<td>277</td>
</tr>
<tr>
<td>Seajin Oh, William Chu, and Sean Cahill</td>
<td></td>
</tr>
<tr>
<td>*CHARACTERIZATION OF SPUTTERED TUNGSTEN SILICIDE AS A MICROMECHANICAL MATERIAL</td>
<td>283</td>
</tr>
<tr>
<td>Muh-Ling Ger and Richard B. Brown</td>
<td></td>
</tr>
<tr>
<td>MECHANICAL AND PIEZORESISTIVE PROPERTIES OF GRAPHITE-FILLED POLYIMIDE THIN FILMS</td>
<td>295</td>
</tr>
<tr>
<td>A. Bruno Frazier, M.R. Khan, and Mark G. Allen</td>
<td></td>
</tr>
<tr>
<td>LPCVD SILICON DIOXIDE SACRIFICIAL LAYER ETCHING FOR SURFACE MICROMACHINING</td>
<td>303</td>
</tr>
<tr>
<td>David J. Monk, David S. Soane, and Roger T. Howe</td>
<td></td>
</tr>
<tr>
<td>*SMART BUILDING MATERIALS WHICH PREVENT DAMAGE OR REPAIR THEMSELVES</td>
<td>311</td>
</tr>
<tr>
<td>Carolyn M. Dry</td>
<td></td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td>315</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>317</td>
</tr>
<tr>
<td>*Invited Paper</td>
<td></td>
</tr>
</tbody>
</table>
Preface

This symposium marked the first of its kind to be given by the Materials Research Society on the rapidly developing fields of "smart materials" and micro-electro-mechanical systems. Originally we had planned to have symposia for each topic, however the materials issues tend to be very similar and thus both were combined. The organizers felt that this created some synergy and hopefully will inspire future uses of adaptive and active materials in these fields.

The science and technology of the 21st century will rely heavily on the development of new materials. Such materials should be innovative with regards to structure, functionality and design. They will have characteristics similar to what has been projected for the current generation of smart structures; i.e. embedded sensors, actuators and control mechanisms that are fully integrated into the structure giving it the ability to sense stimuli imposed upon it and to take an appropriate response to those stimuli in a predetermined and controllable fashion. However, unlike smart structures, smart materials will be fabricated in such a manner that the sensors, actuators and control mechanisms will be part of the microstructure of the material itself. This will typically involve the design, synthesis and processing of such materials at the atomic and/or molecular level.

As the rapidly growing field of micro-electromechanical systems (MEMS) develops, issues of material selection and material characterization will become increasingly important. Indeed, the number of materials which are available for use in the fabrication of MEMS is expanding dramatically. The papers in this volume consider the processing, characterization and application of a wide range of materials, including polycrystalline silicon (the "traditional" material for MEMS), ferroelectrics, optically active materials, metals, polymers, and more. These papers make it clear that "electrical" and "mechanical" communities within MEMS come together through the materials.

Peter Jardine
Andrew Crowson
George Johnson
Mark Allen

June 1992
Acknowledgments

Dr. Jardine would like to thank Dr. Edward Chen of the U.S. Army Research Office for supporting the "Smart Materials Fabrication" section of the symposium and to the invited speakers for their valuable contributions to the symposium. The U.S. Army Research Office has been singularly active in promoting both fundamental and applied research in the area of smart materials, thus their support for this symposium was much appreciated.

The editors would also like to thank the following companies for their support for the "Materials for Micro-electro-Mechanical Systems" section of this symposium.

Ford Motor Company
Hewlett-Packard Company
IBM Corporation
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

