Self-Organized Processes in Semiconductor Heteroepitaxy
Self-Organized Processes in Semiconductor Heteroepitaxy

Symposium held December 1–5, 2003, Boston, Massachusetts, U.S.A.

EDITORS:

Andrew G. Norman
National Renewable Energy Laboratory
Golden, Colorado, U.S.A.

Rachel S. Goldman
University of Michigan
Ann Arbor, Michigan, U.S.A.

Richard Noetzel
Eindhoven University of Technology
Eindhoven, The Netherlands

Gerald B. Stringfellow
University of Utah
Salt Lake City, Utah, U.S.A.
CONTENTS

Preface .. xi

Materials Research Society Symposium Proceedings ... xii

MORPHOLOGICAL EVOLUTION:
PATTERNING AND ISLANDING

Germanium Island Size Distribution by Atomistic Simulation ... 3
Richard J. Wagner and Erdogan Gulari

Fabrication of Two-Dimensional Si/Ge Nanowires and Nanorings 9
Midori Kawamura, Bert Voigtlander, Neelima Paul, and Vasily Cherepanov

SEMICONDUCTOR NANOSTRUCTURE

Epitaxial Metallic Islands: Charge Confinement and Templates for Atomic Wires 17
A.M. Mazzone and G.L. Savini

Facile Fabrication of Nanoparticles in the Nanospace of Ultrathin TiO2-Gel Films: Composition, Morphology and Catalytic Activity ... 23
Junhui He and Toyoki Kunitake

Synthesis and Characterization of WOx Nanowires and Their Conversion to WS2 Nanotubes ... 29
Lifeng Dong, Aitor Maiz, and Jun Jiao

TEM Analysis of Stress in GaInAs/(001)InP Epitaxial Systems ... 35
André Rocher, Martiane Cabié, Anne Ponchet, and Nicolas Bertru

Pit Nucleation in Compound Semiconductor Thin Films ... 41
Mathieu Bouville, Michael L. Falk, and Joanna Mirecki Millunchick

Optical Properties of Quantum-Wires Grown Using Lateral Composition Modulation Induced by (InP)/(GaP) Spinning-Period Superlattices .. 47
J.D. Song, J.M. Kim, and Y.T. Lee
Effects of Growth Sequence on Optical and Structural Properties of InAs/GaAs Quantum Dots Grown by Atomic Layer Molecular Beam Epitaxy

Site-Control Technology for InAs Quantum Dot Formation by Direct Deposition of Indium Nano-Dots With a Nano-Jet Probe
Shunsuke Ohkouchi, Yusui Nakamura, Hitoshi Nakamura, and Kiyoshi Asakawa

InNAs and GaInNAs Self-Assembled Quantum Dots and Lasers Grown by Solid Source Molecular Beam Epitaxy
Z.Z. Sun, S.F. Yoon, K.C. Yew, and B.X. Bo

Preparation of Ge (100) Substrates for High-Quality Epitaxial Growth of Group IV Materials
Mark Nowakowski, Jordana Bandaru, L.D. Bell, and Shouleh Nikzad

Controlled Fabrication by LPCVD of Luminescent SiGe/SiO₂ (LTO) Very Thin Multilayers

Self Organized Compound Semiconductor Nanocrystallite Distributions in SiO₂ on Silicon Synthesized by Ion Implantation
H. Karl, I. Großhans, and B. Stritzker

Room Temperature Resonant Tunneling and Coulomb Blockade in Nanocrystalline Si With Double SiO₂ Barriers
L.C. Wu, K.J. Chen, M. Dai, W. Li, L.W. Yu, and X.F. Huang

Charging Effects in Si Quantum Dots for Non Volatile Memories Applications Monitored by Electrostatic Force Microscopy
R.A. Puglisi, G. Nicotra, S. Lombardo, C. Spinella, G. Ammendola, and C. Gerardi
QUANTUM DOTS: ORDERING AND PATTERNING

(In,Ga)As Quantum Dot Array Formation by Self-Organized Anisotropic Strain Engineering of an (In,Ga)As/GaAs Quantum Wire Template: Shallow-Pattern Effects 105
T. Mano, R. Nötzel, G.J. Hamhuis, T.J. Eijkemans, E. Smalbrugge, and J.H. Wolter

Systematic Studies of SiGe/Si Islands Nucleated via Separate In Situ, or Ex Situ, Ga+ Focused Ion Beam-Guided Growth Techniques .. 111
T.E. Vandervelde, S. Atha, T.L. Pernell, R. Hull, and J.C. Bean

III-V SELF-ORGANIZED NANOSTRUCTURES

Size and Critical Thickness Evolution During Growth of Stacked Layers of InAs/InP(001) Quantum Wires Studied by In Situ Stress Measurements ... 119
David Fuster, María Ujué González, Luisu González, Yolanda González, Teresa Ben, Arturo Ponce, and Sergio I. Molina

Microanalysis of Self-Assembled InAs Quantum Dot Structures Grown for Infrared Detector Applications .. 125
W.L. Sarney, J.W. Little, and S. Svensson

Optical Properties of InGaAs QDs Grown in a GaAs Matrix by MOCVD, Emitting at 1300 nm at Room Temperature ... 131
M.T. Todaro, M. De Giorgi, V. Tasco, M. DeVittorio, A. Passaseo, and R. Cingolani

QUANTUM DOTS AND WIRES: STRUCTURE, SPECTROSCOPY, AND TRANSPORT

Polarization Spectroscopy of Charged Single Self-Assembled Quantum Dots .. 139
Morgan E. Ware, Allan Bracker, Daniel Gammon, and David Gershoni
* Growth Structure, and Optical Properties of III-Nitride Quantum Dots .. 145
 Hadis Morkoçi, Arup Neogi, and Martin Kuball

Diffuse X-ray Scattering From InGaAs/GaAs Quantum Dots .. 165
 Rolf Köhler, Daniil Grigoriev, Michael Hanke,
 Martin Schmiedbauer, Peter Schäfer, Stanislav Besedin,
 Udo W. Pohl, Roman L. Sellin, Dieter Bimberg,
 Nikolai D. Zakharov, and Peter Werner

Near-Field Magneto-Photoluminescence of Single Self-Organized Quantum Dots .. 171
 A.M. Mintairov, A.S. Vlasov, and J.L. Merz

QUANTUM DOTS AND WIRES: DEVICES

* Quantum Dot Lasers and Amplifiers ... 179
 Udo W. Pohl and Dieter Bimberg

1.5 micron InAs Quantum Dot Lasers Based on Metamorphic InGaAs/GaAs Heterostructures .. 189
 V.M. Ustinov, A.E. Zhukov, A.R. Kovsh, N.A. Maleev,
 S.S. Mikhrin, A.P. Vasil’ev, E.V. Nikitina, E.S. Semenova,
 N.V. Kryzhanovskaya, Yu.G. Musikhin, Yu.M. Shernyakov,
 M.V. Maximov, N.N. Ledentsov, D. Bimberg, and Zh.I. Alferov

Nanoengineered Quantum Dot Active Medium for Thermally-Stable Laser Diodes .. 195
 V. Tokranov, M. Yakimov, A. Katsnelson, M. Lamberti,
 G. Agnello, and S. Oktyabrsky

First Electrically Injected QD-MCLED Emitting at 1.3 \(\mu \)m, Grown by Metal Organic Chemical Vapor Deposition .. 201
 V. Tasco, M.T. Todaro, M. De Giorgi, M. DeVittorio,
 R. Cingolani, and A. Passascco

Growth and Characterization of InAs Quantum Dots on GaAs (100) Emitting at 1.31 \(\mu \)m .. 207
 V. Celibert, B. Salem, G. Guillot, C. Bru-Chevallier,
 L. Grenouillet, P. Duvaut, P. Gilet, and A. Million

*Invited Paper
SPINS IN SEMICONDUCTOR NANOSTRUCTURES

* Application of Diluted Magnetic Semiconductors and Quantum Dots to Spin Polarized Light Sources ... 215
 Pallab Bhattacharya, Sasan Fathpour, Subhananda Chakrabarti, Michael Holub, and Siddhartha Ghosh

* Effects of Clustering and Dimensionality on the Magnetic Properties of Diluted Magnetic Semiconductors .. 227
 R.N. Bhatt, Malcolm P. Kennett, Mona Berciu, and Adel Kassaian

COMPOSITION MODULATION

* Instabilities, Elasticity, and Wetting Effect in Multilayer Heteroepitaxial Growth ... 241
 Zhi-Feng Huang and Rashmi C. Desai

On the Manipulation of Nanoscale Self-Assembly by Elastic Field .. 253
 Y.F. Gao

* Self-Organized Superlattices in GaInAsSb Grown on Vicinal Substrates .. 259
 C.A. Wang, C.J. Vineis, and D.R. Calawa

Optical and Structural Properties of InAs/GaSb Nanostructures ... 271

ATOMIC ORDERING

* Effects Due to and Derived From Spontaneous Ordering in III-V Semiconductor Alloys ... 279
 Yong Zhang and A. Mascarenhas

Effects of Surfactants N and Br on Ordering in GaInP ... 291
 D.C. Chapman, A.D. Howard, L. Rieth, R.R. Wixom, and G.B. Stringfellow

* Invited Paper
* Quadruple-Period Ordering in MBE GaAsSb Alloys .. 297
 Iskander G. Batyrev, Andrew G. Norman,
 Shengbai Zhang, and Su-Huai Wei

Effects of Substrate Orientation on the Spontaneous Ordering
of GaAsSb Epilayers Grown by Molecular Beam Epitaxy 309
 Brian P. Gorman, Andrew G. Norman, Reiko Lukic-Zrnic,
 Terry D. Golding, and Chris L. Littler

Author Index .. 315

Subject Index .. 319

*Invited Paper
PREFACE

This volume contains a compilation of papers presented in Symposium T, “Self-Organized Processes in Semiconductor Epitaxy,” held December 1–5 at the 2003 MRS Fall Meeting in Boston, Massachusetts. The proceedings includes papers presented in joint sessions with Symposium N, “Quantum Dots, Nanoparticles, and Nanowires,” and Symposium Z, “Progress in Compound Semiconductor Materials III—Electronic and Optoelectronic Applications.” The goal of this symposium was to address issues related to the understanding, control, and applications of several self-organized processes in semiconductor epitaxy, including strain-induced self-assembly; clustering, alloy phase separation, and compositional modulation; and long- and short-range ordering. The symposium was extremely successful in meeting the above goal and attracted participants from around the world. We hope that the symposium and the proceedings will stimulate further research into the above areas. This symposium forms part of a highly successful series of symposia held on these topics that also includes symposia previously held at the 1995 and 1999 MRS Fall Meetings.

We wish to thank all of the authors of the symposium for their efforts in preparing manuscripts, as well as the participants of the symposium for their excellent presentations and stimulating questions and discussions. The organizers are grateful for the financial support of the National Science Foundation, under Grant Number DMR-0404630, administered by Dr. LaVerne Hess. We also acknowledge MRS, the National Renewable Energy Laboratory, Omicron NanoTechnology U.S.A, and Veeco Instruments Inc. (MBE Operations) for additional financial support. We also wish to thank the session chairs, the 2003 MRS Fall Meeting Chairs, and the MRS support staff for their encouragement and help with the symposium and proceedings. Finally, we wish to thank the DOE Office of Basic Energy Sciences, Division of Materials Sciences, for their long and continued support of research in the areas of quantum dots, compositional modulation, and spontaneous atomic ordering, without which the striking progress in these areas evident at the symposium would not have been possible.

Andrew G. Norman
Rachel S. Goldman
Richard Noetzel
Gerald B. Stringfellow

February 2004
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

Prior Materials Research Society Symposium Proceedings available by contacting Materials Research Society