

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Materials Research Society Symposium Proceedings</td>
<td>xii</td>
</tr>
<tr>
<td>COPPER CMP</td>
<td></td>
</tr>
<tr>
<td>* Challenges and Rewards of Low-Abrasive Copper CMP: Evaluation and Integration for Single-Damascence Cu/Low-k Interconnects for the 90 nm Node</td>
<td>3</td>
</tr>
<tr>
<td>Christopher L. Borst, Stanley M. Smith, and Mona Eissa</td>
<td></td>
</tr>
<tr>
<td>Investigation of the Influence of Different Copper Slurry Systems on Post CMP Topography Performance</td>
<td>15</td>
</tr>
<tr>
<td>Goetz Springer, Peter Thieme, and Pierre Klose</td>
<td></td>
</tr>
<tr>
<td>Copper CMP Formulation for 65 nm Device Planarization</td>
<td>23</td>
</tr>
<tr>
<td>Gregory T. Stauf, Karl Boggs, Peter Wrschka,</td>
<td></td>
</tr>
<tr>
<td>Craig Ragaglia, Michael Darsillo, Jeffrey F. Roeder, Mackenzie King, Jun Liu, and Thomas Baum</td>
<td></td>
</tr>
<tr>
<td>Effect of Hydrogen Peroxide on Oxidation of Copper in CMP Slurries Containing Glycine and Cu Sulfate</td>
<td>29</td>
</tr>
<tr>
<td>Tianbao Du, Arun Vijayakumar, and Vimal Desai</td>
<td></td>
</tr>
<tr>
<td>Modified Abrasives Based on Fumed SiO₂ and Al₂O₃ for the Cu CMP Process</td>
<td>35</td>
</tr>
<tr>
<td>D. Zeidler, J.W. Bartha, W. Lortz, and R. Brandes</td>
<td></td>
</tr>
<tr>
<td>Novel Pure Organic Particles for Copper CMP at Low Down Force</td>
<td>41</td>
</tr>
<tr>
<td>K. Cheemalapati, A. Chowdhury, V. Duvvuru, Yong Lin, Kwok Tang, Guomin Bian, Lily Yao, and Yuzhuo Li</td>
<td></td>
</tr>
<tr>
<td>Effect of Nano-Size Silica Abrasives in Chemical Mechanical Polishing of Copper</td>
<td>49</td>
</tr>
<tr>
<td>Su-Ho Jung and Rajiv K. Singh</td>
<td></td>
</tr>
</tbody>
</table>

*Invited Paper
METAL CMP MODELING

A Model of Cu-CMP
Ed Paul, Vlasta Brusic, Fred Sun, Jian Zhang,
Robert Vacassy, and Frank Kaufman

Coherent Chip-Scale Modeling for Copper CMP Pattern Dependence
Hong Cai, Tae Park, Duane Boning, Hyungjun Kim,
Youngsoo Kang, Sibum Kim, and Jeong-Gun Lee

PLANARIZATION EQUIPMENT

* Polish Profile Control Using Magnetic Control Head
Manabu Tsujimura, Yu Ishii, Norio Kimura, and
Masahiro Ota

Adaptive Piezo-Controlled Carrier for CMP Processing
Christian-Toralf Weber, Jürgen Weiser, Dieter Zeidler,
and Johann W. Bartha

Metrological Assessment of the Coefficient of Friction of Various Types of Silica Using the Motor Current During ILD-CMP
Harald Jacobsen, Eric Stachowiak, Gerfried Zwicker,
Wolfgang Lortz, and Ralph Brandes

POSTER SESSION

A Study on the Self-Stopping CMP Process for the Planarization of the High Step Height (@step height>1.5 um) Pattern
Kwang-Bok Kim, Hyo-Jin Lee, Ki-Hoon Jang,
Joung-Duk Ko, Kyung-Hyun Kim, In-Seac Hwang,
Yong-Sun Ko, and Chang-Lyong Song

Modeling of Pattern Density Dependent Pressure Non-Uniformity at a Die Scale for ILD Chemical Mechanical Planarization
Jihong Choi and David A. Dornfeld

*Invited Paper
Effect of Abrasive in Cu-CMP Slurry on Global Planarization ... 107
Yutaka Nomura, Hiroshi Ono, Hiroki Terazaki, Yasuo Kamigata, and Masato Yoshida

Investigation of Mechanical Integrity and Its Effect on Polishing for Novel Polyurethane Polishing Pad .. 113
Parshuram Zantye, S. Mudhivarthi, A.K. Sikder, Ashok Kumar, S. Ostapenko, and Julie Harmon

Interaction Between Abrasive Particles and Film Surfaces in Low Down Force Cu CMP ... 119
Yuchun Wang, Isaac Zomora, Joe Hawkins, Renjie Zhou, Fred Sun, Roy Martinez, Jian Zhang, Bin Lu, and Shumin Wang

Effect of Particle Interaction on Agglomeration of Silica-Based CMP slurries ... 125
A. Sorooshian, R. Ashwani, H.K. Choi, M. Moinpour, A. Oehler, and A. Tregub

Measurement of Electroplated Copper Overburden for Advanced Process Development and Control ... 133
Joshua Tower, Alexei Maznev, Michael Gostein, and Koichi Otsubo

POLISHING PADS

Micro Feature Pad Development and Its Performance in Chemical Mechanical Planarization ... 141
Sunghoon Lee and David A. Dornfeld

* Characterization of CMP Pad Surface Texture and Pad-Wafer Contact ... 147
Gregory P. Muldowney and David B. James

Modeling CMP Transport and Kinetics at the Pad Groove Scale ... 159
Gregory P. Muldowney

* In Situ Friction and Pad Topography Measurements During CMP ... 165
Caprice Gray, Daniel Apone, Chris Barns, Moinpour Monsour, Sriram Anjur, Vincent Manno, and Chris Rogers

*Invited Paper
Metrology of Psiloquest’s Application Specific Pads (ASP) for CMP Applications
Parshuram B. Zantye, S. Mudhivarthi, Arun K. Sikder, Ashok Kumar, and Yaw Obeng

CMP CORROSION AND CLEANING

Influence of Electrochemical Plating Process Parameters on Corrosion of Cu Damascene Interconnects
D. Ernur, W. Wu, S.H. Brongersma, V. Terzieva, and K. Maex

NOVEL CMP APPLICATIONS

Advances in the CMP Process on Fixed Abrasive Pads for the Polishing of SOI-Substrates With High Degree of Flatness
Martin Kulawski, Hannu Luoto, Kimmo Henttinen, Ilkka Suni, Frauke Weimar, and Jari Mäkinen

Analysis of Nanotopography in Silicon Generated by the Polishing Process
Hiromichi Isogai and Katsuyoshi Kojima

The Application of Chemical Mechanical Polishing for Nickel Used in MEMS Devices
Arun Vijayakumar, Tianbao Du, Kalpathy B. Sundaram, and Vimal Desai

CMP Modeling and Characterization for Polysilicon MEMS Structures
Brian Tang and Duane Boning

* Planarization Issues in Wafer-Level Three-Dimensional (3D) Integration
J.-Q. Lu, G. Rajagopalan, M. Gupta, T.S. Cale, and R.J. Gutmann

CMP MODELING

Pad Asperity Parameters for CMP Process Simulation
Takafumi Yoshida

*Invited Paper
Assessment of Planarization Length Variation by the Step-Polish-Response (SPR) Method
Johann W. Bartha, Tilo Bormann, Kathrin Estel, and Dieter Zeidler

OXIDE AND STI CMP

* Cerium Oxide Abrasives—Observations and Analysis
David R. Evans

Material Removal Mechanisms of Oxide and Nitride CMP
With Ceria and Silica-Based Slurries—Analysis of Slurry Particles Pre- and Post-Dielectric CMP
Naga Chandrasekaran

WID Nit Variation Improvements for HSS STI CMP Process Using Modified Scribe Lane Pattern Design
Hyuk Kwon, Yong-Soo Choi, Sang-Hwa Lee, Geun-Min Choi, Yong-Wook Song, and Gyu-Han Yoon

Characterizing STI CMP Processes With an STI Test Mask Having Realistic Geometric Shapes
Xiaolin Xie, Tae Park, Duane Boning, Aaron Smith, Paul Allard, and Neil Patel

Investigation and Control of Chemical and Surface Chemical Effects During Dielectric CMP
J.T. Abiade, W. Choi, V. Khosla, and R.K. Singh

Author Index

Subject Index

*Invited Paper