Amorphous and Nanocrystalline Silicon Science and Technology — 2005
Amorphous and Nanocrystalline Silicon Science and Technology — 2005

Symposium held March 28–April 1, 2005, San Francisco, California, U.S.A.

EDITORS:

Robert W. Collins
University of Toledo
Toledo, Ohio, U.S.A.

P. Craig Taylor
University of Utah
Salt Lake City, Utah, U.S.A.

Michio Kondo
National Institute of Advanced Industrial Science and Technology
Tsukuba, Ibaraki, Japan

Reinhard Carius
Institute of Photovoltaics, Forschungszentrum Jülich
Jülich, Germany

Rana Biswas
Iowa State University
Ames, Iowa, U.S.A.

Materials Research Society
Warrendale, Pennsylvania
CONTENTS

Preface ... xix

Materials Research Society Symposium Proceedings .. xxiii

PART I:
PIONEERING USE OF PHOTONS
TO PROBE SILICON FILMS

* Urbach Edge, Disorder, and Absorption On-Set in a-Si:H 3
 G.D. Cody

PART II:
AMORPHOUS FILMS: DEPOSITION
PROCESSES AND PROPERTIES

* Novel In Situ and Real-Time Optical Probes to Detect
(Surface) Defect States of a-Si:H .. 19
 W.M.M. Kessels, I.M.P. Aarts, J.J.H. Gielis,
 J.P.M. Hoefnagels, and M.C.M. van de Sanden

Correlation between Powder in the Plasma and Stability of
High Rate Deposited a-Si:H .. 31
 Guozhen Yue, Gautam Ganguly, Baojie Yan,
 Jeffrey Yang, and Subhendu Guha

The Role of SiH₃ Diffusion in Determining the Surface
Smoothness of Plasma-Deposited Amorphous Si Thin
Films: An Atomic-Scale Analysis .. 37
 Mayur S. Valipa, Tamas Bakos, Eray S. Aydil, and
 Dimitrios Maroudas

Development of Deposition Phase Diagrams for Thin Film
Si:H and Siₓ₋₄Geₓ:H Using Real Time Spectroscopic
Ellipsometry ... 43
 N.J. Podraza, G.M. Ferreira, C.R. Wronski, and
 R.W. Collins

Electronic Properties of Improved Amorphous Silicon-
Germanium Alloys Deposited by a Low Temperature
Hot Wire Chemical Vapor Deposition Process 49
 Shouvik Datta, J. David Cohen, Yueqin Xu, and
 A.H. Mahan

*Invited Paper
AFM Morphology Study of Si$_{1-x}$Ge$_x$:H Films Deposited by LF PE CVD from Silane-Germane with Different Dilution.. 55
L. Sanchez, A. Kosarev, A. Torres, T. Felter, and A. Ilinskij

Improved Optical Loss Characteristics of PECVD Silicon Oxy nitride Films Using Low Frequency Plasma.. 61
S. Naskar, C.A. Bower, S.D. Wolter, B.R. Stoner, and J.T. Glass

PART III:
NANO/MICROCRYSTALLINE FILMS:
DEPOSITION PROCESSES AND PROPERTIES

Growth Chemistry of Nanocrystalline Si:H Films.. 69
Vikram L. Dalai, Kamal Muthukrishnan, Daniel Stieler, and Max Noack

Nanocrystalline Si Films and Devices Produced Using Chemical Annealing with Helium.. 75
Nanlin Wang and Vikram L. Dalai

Nanocrystalline-Si Thin Film Deposited by Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD) at 150°C .. 81
Sang-Myeon Han, Joong-Hyun Park, Hye-Jin Lee, Kwang-Sub Shin, and Min-Koo Han

Influence of Pressure and Plasma Potential on High Growth Rate Microcrystalline Silicon Grown by VHF PECVD.. 87
A. Gordijn, J. Francke, L. Hodakova, J.K. Rath, and R.E.I. Schropp

High Density Plasma Processing of Microcrystalline Si Thin Films .. 93
P.C. Joshi, A.T. Voutsas, and J.W. Hartzell

Dependence of Microcrystalline Silicon Growth on Ion Flux at the Substrate Surface in a Saddle Field PECVD .. 99
Erik Johnson, Nazir P. Kherani, and Stefan Zukotynski
'Seed Layers' for the Preparation of Hydrogenated Microcrystalline Silicon with Defined Structural Properties on Glass

Christoph Ross, Yaohua Mai, Reinhard Carius, and Friedhelm Finger

Crystallographic Study of the Initial Growth Region of μc-Si with Different Preferential Orientations

Y. Sobajima, T. Sugano, T. Kitagawa, T. Toyama, and H. Okamoto

Structural and Electronic Properties of Hydrogenated Nanocrystalline Silicon Films Made with Hydrogen Dilution Profiling Technique

Keda Wang, Daxing Han, D.L. Williamson, Brittany Huie, J.R. Weinberg-Wolf, Baojie Yan, Jeffrey Yang, and Subhendu Guha

* Structure of Microcrystalline Solar Cell Materials: What Can We Learn from Electron Microscopy?

M. Luysberg and L. Houben

Microcrystalline and Nanocrystalline Silicon: Simulation of Material Properties

R. Biswas, B.C. Pan, and V. Selvaraj

Doping Dependence of Chlorine Incorporation in SiCl₄-Based Microcrystalline Silicon Films

Wolfhard Beyer, Reinhard Carius, and Uwe Zastrow

Low Substrate Temperature Deposition of Crystalline SiC Using HWCVD

S. Klein, R. Carius, L. Houben, and F. Finger

Nanocrystalline Germanium and Germanium Carbide Films and Devices

Xuejun Niu, Jeremy Booher, and Vikram L. Dalal

*Invited Paper
PART IV:

EPITAXIAL AND POLYCRYSTALLINE FILMS:
DEPOSITION PROCESSES AND PROPERTIES

* Real-Time Spectroscopic Ellipsometry as an In Situ Probe
 of the Growth Dynamics of Amorphous and Epitaxial
 Crystal Silicon for Photovoltaic Applications

D.H. Levi, C.W. Teplin, E. Iwaniczko, Y. Yan, T.H. Wang,
 and H.M. Branz

A Phase Diagram of Low Temperature Epitaxial Silicon
Grown by Hot-Wire Chemical Vapor Deposition for
Photovoltaic Devices

Christine Esber Richardson, Brendan M. Kayes,
Matthew J. Dicken, and Harry A. Atwater

Silicon Homoepitaxy Using Tantalum-Filament Hot-Wire
Chemical Vapor Deposition

Charles W. Teplin, Eugene Iwaniczko, Kim M. Jones,
Robert Reedy, Bobby To, and Howard M. Branz

Growth of “New Form” of Polycrystalline Silicon Thin
Films Synthesized by Hot Wire Chemical Vapor Deposition

A.R. Middya, J-J. Liang, and K. Ghosh

Hot-Mesh Chemical Vapor Deposition for 3C-SiC Growth
on Si and SiO2

Kanji Yasui, Jyunpei Eto, Yuzuru Narita, Masasuke Takata,
and Tadashi Akahane

Polycrystalline GeC Thin Films Deposited Using a Unique
Hollow Cathode Sputtering Technique

R.J. Soukup, N.J. Ianno, J.S. Schrader, and V.L. Dalal

Micro-Crystalline Silicon-Germanium Thin Films
Prepared by the Multi-Target RF Sputtering System

Toru Ajiki, Isao Nakamura, and Masao Isomura

Poly-Crystalline Ge Thin Films Prepared by RF
Sputtering Method for Thermo Photo Voltaic Application

Daisuke Hoshi, Isao Nakamura, and Masao Isomura

Ge Growth on Nanostructured Silicon Surfaces

Ganesh Vanamu, Abhaya K. Datye, and Saleem H. Zaidi

*Invited Paper
GaAs Growth on Micro and Nano Patterned Ge/Si$_x$Ge$_{1-x}$ and Si Surfaces

Ganesh Vanamu, Abhaya K. Datye, Ralph L. Dawson, and Saleem H. Zaidi

PART V: CRYSTALLIZED AND ANNEALED FILMS: PROCESSES AND PROPERTIES

Real Time Monitoring of the Crystallization of Hydrogenated Amorphous Silicon

Paul Stradins, David Young, Howard M. Branz, Matthew Page, and Qi Wang

Solid Phase Crystallization of Hot-Wire CVD Amorphous Silicon Films

David L. Young, Paul Stradins, Eugene Iwaniczko, Bobby To, Bob Reedy, Yanfa Yan, Howard M. Branz, John Lohr, Manuel Alvarez, John Booske, Amy Marconnet, and Qi Wang

Suppression of Nucleation during the Aluminum-Induced Layer Exchange Process

Jens Schneider, Juliane Klein, Andrey Sarikov, Martin Muske, Stefan Gall, and Walther Fuhs

Correlation of In and Ex Situ Stress to Microstructures during Al-Induced Crystallization of PECVD Amorphous Silicon

S. Ray, Y.G. Lian, V. Sriram, D.J. Tucker, and G.Z. Pan

TCAD Modeling of Metal Induced Lateral Crystallization of Amorphous Silicon

Aleksey M. Agapov, Valeri V. Kalinin, Alexandre M. Myasnikov, Vincent M.C. Poon, and Bert Vermeire

Excimer Laser Crystallized HWCVD Thin Silicon Films: Electron Field Emission

Formation of a Miscibility Gap in Laser-Crystallized Poly-SiGe Thin Films

M. Weizman, N.H. Nickel, I. Sieber, and B. Yan
Ultra-Shallow Junction Formation by a Non-Melting Process: Double-Pulsed Green Laser Annealing
Toshio Kudo, Susumu Sakuragi, and Kazunori Yamazaki

Application of Field-Enhanced Rapid Thermal Annealing to Activation of Doped Polycrystalline Si Thin Films
B.S. So, Y.H. You, H.J. Kim, Y.H. Kim, J.H. Hwang,

Effects of Post Annealing and Material Stability on Undoped and n+ nc-Si:H Films Deposited at 75°C Using 13.56 MHz PECVD
Czang-Ho Lee, Andrei Sazonov, and Arokia Nathan

Annealing Characteristics of Al-Doped Hydrogenated Microcrystalline Cubic Silicon Carbide Films
S. Miyajima, A. Yamada, and M. Konagai

Initial Stage Hydrogen Movement and IR Absorption Proportionality Constants in Hot-Wire Deposited SiN$_{1.2}$H during High-Temperature Annealing
H.D. Goldbach, V. Verlaan, C.H.M. van der Werf,
W.M. Arnoldbik, H.C. Rieffe, I.G. Romijn,
A.W. Weeber, and R.E.I. Schropp

PART VI: NANOPARTICLES, NANOCRYSTALS, AND QUANTUM DOTS: FABRICATION AND PROPERTIES

Electrodeposition of Fluorescent Si Nanomaterial from Acidic Sodium Silicate Solutions
Laila H. Abuhassan and Munir H. Nayfeh

High-Yield Synthesis of Luminescent Silicon Quantum Dots in a Continuous Flow Nonthermal Plasma Reactor
L. Mangolini, E. Thimsen, and U. Kortshagen

Experimental Study of Silane Plasma Nanoparticle Formation in Amorphous Silicon Thin Films
S. Thompson, C.R. Perrey, T.J. Belich, C. Blackwell,
C.B. Carter, J. Kakalios, and U. Kortshagen
Effects of N₂O Fluence on the PECVD-Grown Si-Rich SiOₓ with Buried Si Nanocrystals
Chun-Jung Lin, Hao-Chung Kuo, Chia-Yang Chen, Yu-Lun Chueh, Li-Jen Chou, Chih-Wei Chang, Eric Wei-Guang Diau, and Gong-Ru Lin

CO₂ Laser Annealing Synthesis of Silicon Nanocrystals Buried in Si-Rich SiO₂
Chun-Jung Lin, Yu-Lun Chueh, Li-Jen Chou, Hao-Chung Kuo, and Gong-Ru Lin

Charging Effect of a nc-Si in a SiO₂ Layer Observed by Scanning Probe Microscopy

Conductance Fluctuations in Amorphous Silicon Nanoparticles

Study of the Oxidation of Polycrystalline SiGe: Formation of Ge Nanocrystals and Their Related Luminescence
A.C. Prieto, M. Avella, J. Jiménez, A. Rodríguez, J. Sangrador, T. Rodríguez, and A. Kling

PART VII: NANOSTRUCTURES AND PHOTONIC MATERIALS

Formation of Antimony 1D-Nanostructures on Si (5 5 12) Surface
S.M. Shivaprasad, Mahesh Kumar, Amish G. Joshi, and Vinod Kumar Paliwal

Fabrication of One-Dimensional Silicon Nano-Wires Based on Proximity Effects of Electron-Beam Lithography
S.F. Hu and C.L. Sung

Fabrication of Silicon Nanowire Network in Aluminum Thin Films
Wiring and Introduction of Single Silicon Nanocrystals into Multi-Walled Carbon Nanotubes
Vladimir Svrcek, Francois Le Normand, Ovidui Ersen, Coung Pham-Huu, Dominique Begin, Benoit Louis, and Marc-Jaques Ledoux

Metal Induced Growth of Poly-Si Solar Cells and Silicide Nanowires by Use of Multiple Catalyst Layers
Joondong Kim, Chunhai Ji, and Wayne A. Anderson

New Light Trapping in Thin Film Solar Cells Using Textured Photonic Crystals
Lirong Zeng, Yasha Yi, Ching-yin Hong, Xiaoman Duan, and Lionel C. Kimerling

Advances in Amorphous Silicon Integrated Photonics Science and Technology
G.P. Halada, Samrat Chawda, J. Mawyin, R.J. Tonucci, A.H. Mahan, and C.M. Fortmann

Fabrication of Nano-Crystalline Porous Silicon on Si Substrates by a Plasma Enhanced Hydrogenation Technique
Y. Abdi, P. Hashemi, F. Karbassian, F.D. Nayeri, A. Behnam, S. Mohajerzadeh, J. Koohsorkhi, M.D. Robertson, and E. Arzi

PART VIII: HETEROSTRUCTURES AND THEIR DEVICE APPLICATIONS

* Application of Spectroscopic Ellipsometry and Infrared Spectroscopy for the Real-Time Control and Characterization of a-Si:H Growth in a-Si:H/c-Si Heterojunction Solar Cells
Hiroyuki Fujiwara and Michio Kondo

High-Performance Amorphous Silicon Emitter for Crystalline Silicon Solar Cells

*Invited Paper
Bifacial Silicon Heterojunction Solar Cell with Deposited Back Surface Field
H.D. Goldbach, A. Bink, and R.E.I. Schropp

Electron Field Emission From SiC/Si Heterostructures Formed by Carbon Implantation into Silicon and Etching of the Top Silicon Layer
Yumei Xing, Jihua Zhang, Yuehui Yu, Zhaorui Song, and Dashen Shen

R. Brüggemann, M. Rösch, S. Tardon, and G.H. Bauer

PART IX: DEFECTS, HYDROGEN, AND METASTABILITY IN AMORPHOUS AND NANO/MICROCRYSTALLINE FILMS

Characterization of Amorphous Silicon by Secondary Ion Mass Spectrometry
Yupu Li, Shaw Wang, Xue-Feng Lin, and Luncun Wei

Observation of a Hydrogen Doublet Site in High Defect Density As-Grown a-Si:H by 1H NMR
D. Bobela, T. Su, P.C. Taylor, and G. Ganguly

The Nature of Native and Light Induced Defect States in i-Layers of High Quality a-Si:H Solar Cells Derived from Dark Forward-Bias Current-Voltage Characteristics
J. Deng, M.L. Albert, J.M. Pearce, R.W. Collins, and C.R. Wronski

The Creation and Annealing Kinetics of Fast Light Induced Defect States Created by 1 Sun Illumination in a-Si:H

Light-Intensity Dependence of the Staebler-Wronski Effect in a-Si:H with Various Densities of Defects
Minoru Kumeda, Ryohei Sakai, Akiharu Morimoto, and Tatsuo Shimizu
Effect of Fermi Level Position in Intrinsic a-Si:H on the Evolution of Defect States under Light Exposure

M. Zeman, V. Nádaždy, R. Durny, and J.W. Metselaar

Light-Soaking Effects on the Open-Circuit Voltage of a-Si:H Solar Cells

Jianjun Liang, E.A. Schiff, S. Guha, B. Yan, and J. Yang

The Effects of Hydrogen Profiling and of Light-Induced Degradation on the Electronic Properties of Hydrogenated Nanocrystalline Silicon

A.F. Halverson, J.J. Gutierrez, J.D. Cohen, Baojie Yan, Jeffrey Yang, and Subhendu Guha

Comparison of the Effect of Light Soaking in Porous Silicon and a-Si:H

N.P. Mandal and S.C. Agarwal

PART X: OPTICAL AND ELECTRONIC TRANSPORT PROPERTIES OF FILMS

Optical Properties of Amorphous Silicon-Yttrium Films

Alexandra N. Shmyryeva and Tetyana V. Semikina

Stark Splitting in Photoluminescence Spectra of Er in a-Si:H

Minoru Kumeda, Mitsuo Takahashi, Akiharu Morimoto, and Tatsuo Shimizu

Photoluminescence and Electroluminescence Properties of FeSi₂-Si Structures Formed by MEVVA Implantation

C.F. Chow, Y. Gao, S.P. Wong, N. Ke, Q. Li, W.Y. Cheung, G. Shao, M.A. Lourenco, and K.P. Homewood

Computer Modelling of Non-Equilibrium Multiple-Trapping and Hopping Transport in Amorphous Semiconductors

C. Main, J.M. Marshall, S. Reynolds, M.J. Rose, and R. Brüggemann
Multiple-Trapping Model with Meyer-Neldel Effect and Field-Dependent Effects: Time-of-Flight Simulations for a-Si:H

Jesse Maassen, Arthur Yelon, Louis-André Hamel, and Wen Chao Chen

Transport and Meyer-Neldel Rule in Microcrystalline Silicon Films

Steve Reynolds, Vlad Smirnov, Friedhelm Finger, Charlie Main, and Reinhard Carius

Metastable Changes in the Photoconductive Properties of Microcrystalline Silicon upon Heat Treatment

R. Brüggemann

PECVD Grown Hydrogenated Polymorphous Silicon Studied Using Current Transient Spectroscopies in PIN Diodes

Vibha Tripathi, Y.N. Mohapatra, and P. Roca i Cabarrocas

Influence of Hydrogen Plasma on Electrical and Optical Properties of Transparent Conductive Oxides

PART XI: THIN FILM SOLAR CELLS

* Improved Stability of Hydrogenated Amorphous Silicon Solar Cells Fabricated by Triode-Plasma CVD

H. Sonobe, A. Sato, T. Fujibayashi, S. Shimizu, T. Matsui, A. Matsuda, and M. Kondo

* Highly and Rapidly Stabilized Protocrystalline Silicon Multilayer Solar Cells

Koeng Su Lim, Joong Hwan Kwak, Seong Won Kwon, and Seung Yeop Myong

High Efficiency Solar Cells with Intrinsic Microcrystalline Silicon Absorbers Deposited at High Rates by VHF-PECVD

Yaohua Mai, Stefan Klein, Reinhard Carius, Xinhua Geng, and Friedhelm Finger

*Invited Paper
* Characterization of the Silicon-Based Thin Film Multi-
Junction Solar Cells ... 579
Yoshihiro Hishikawa

Temperature-Dependent Open-Circuit Voltage
Measurements and Light-Soaking in Hydrogenated
Amorphous Silicon Solar Cells ... 591
Jianjun Liang, E.A. Schiff, S. Guha, B. Yan, and
J. Yang

Use of Transparent Conductive Oxide Materials with Low
Indices of Refraction in Amorphous Silicon-Based Solar
Cell Technology ... 597
Scott J. Jones, Joachim Doehler, Tongyu Liu, David Tsu,
Jeff Steele, Rey Capangpangan, and Masat Izu

Improved Back Reflector for High Efficiency Hydrogenated
Amorphous and Nanocrystalline Silicon Based Solar Cells 603
Baojie Yan, Jessica M. Owens, Chun-Sheng Jiang,
Jeffrey Yang, and Subhendu Guha

PART XII:
THIN FILM TRANSISTORS

Characterization of Silicon Thin Film Deposited by
E-Beam Evaporator for Flexible Display 611
In-Hyuk Song, Sang-Myeon Han, Jung-Hyun Park,
and Min-Koo Han

Low Hydrogen Concentration Silicon Nitride as a Gate
Dielectric of TFTs for Flexible Display Application 617
Joong Hyun Park, Chang Yeon Kim, Kwang Sub Shin,
Sang Geun Park, and Min Koo Han

Electrolyte-Gate a-Si:H Thin Film Transistors 623
Dina I. Gonçalves, Duarte M. Prazeres, Virginia Chu,
and João P. Conde

The Hysteresis Analysis of Hydrogenated Amorphous
Silicon Thin Film Transistors for an Active Matrix
Organic Light Emitting Diode .. 629
Jae-Hoon Lee, Bong-Hyun You, Kwang-Sub Shin,
and Min-Koo Han

*Invited Paper
Active Pixel TFT Arrays for Digital Fluoroscopy in a-Si:H Technology ... 635
Jackson Lai, Nader Safavian, Arokia Nathan, and John A. Rowlands

High Electron Mobility (~150 cm²/Vs) PECVD Nanocrystalline Silicon Top-Gate TFTs at 260°C ... 641
Czang-Ho Lee, Andrei Sazonov, and Arokia Nathan

Gate Oxide Integrity for Polysilicon Thin-Film Transistors: A Comparative Study for ELC, MILC, and SPC Crystallized Active Polysilicon Layer ... 647

Threshold Voltage Optimization with Ion Shower Implantation for Polysilicon Thin-Film Transistors ... 653

Low Temperature Metal-Free Fabrication of Polycrystalline Si and Ge TFTs by PECVD Hydrogenation ... 659
Pouya Hashemi, Jaber Derakhshandeh, Bahman Hekmatshoar, Shamsoddin Mohajerzadeh, Yaser Abdi, and Michael D. Robertson

PART XIII:
THIN FILM DETECTORS,
SENSORS, AND OTHER DEVICES

Effect of the Hydrogen Content in the Optical Properties and Etching of Silicon Nitride Films Deposited by PECVD for Uncooled Microbolometers ... 667
R. Ambrosio, A. Torres, A. Kosarev, M. Landa, and A. Heredia

Spectral Sensitivity and Color Selectivity in Multilayer Stacked Devices ... 673
P. Louro, M. Vieira, A. Fantoni, M. Fernandes, G. Lavareda, and C. Nunes de Carvalho

Amorphous Silicon Based p-i-n Structure for Color Sensor ... 679
S. Zhang, L. Raniero, E. Fortunato, L. Pereira, H. Águas, I. Ferreira, and R. Martins
Image and Color Sensitive Detector Based on Double p-i-n/p-i-n a-SiC:H Photodiode... 685
 M. Vieira, M. Fernandes, P. Louro, A. Fantoni,
 Y. Vygranenko, G. Lavareda, and C.N. Carvalho

Effect of the Load Resistance in the Linearity and Sensitivity of MIS Position Sensitive Detectors.......................... 691
 H. Águas, L. Pereira, L. Raniero, E. Fortunato, and
 R. Martins

Radiation Hard Amorphous Silicon Particle Sensors.. 697
 N. Wyrsch, C. Miazza, S. Dunand, C. Ballif, A. Shah,
 M. Despeisse, D. Moraes, and P. Jarron

Two-Dimensional a-Si:H/a-SiC:H n-i-p Sensor Array with ITO/a-SiN, Antireflection Coating 703
 Yu. Vygranenko, J. H. Chang, and A. Nathan

Low Temperature Thin-Film Silicon Diodes for Consumer Electronics.. 709
 Qi Wang, Scott Ward, Anna Duda, Jian Hu, Paul Stradins,
 Richard S. Crandall, Howard M. Branz, Frank Jeffrey,
 Hao Lou, Craig Perlov, Warren Jackson, Ping Mei, and
 Carl Taussig

Author Index ... 715

Subject Index ... 721
PREFACE

Symposium A, "Amorphous and Nanocrystalline Silicon Science and Technology — 2005," held March 28–April 1 at the 2005 MRS Spring Meeting in San Francisco, California, marked its twenty-second consecutive year of association with the MRS Spring Meeting. Interest in Symposium A continues unabated into its third decade; in all, 162 abstracts were received. The symposium attracted participants from universities, industries, and government laboratories worldwide. As an indication of the international scope, presenting authors for 65% of the abstracts were affiliated outside the United States, and the final program included representation from 25 nations. The highlights of the symposium were three sessions of invited presentations pertaining to the 2005 World Year of Physics and celebrating, in particular, the centennial of Einstein’s modern definition of the photon.

The opening session of the symposium honored pioneers in the use of photons to probe tetrahedrally-bonded amorphous semiconductor thin films. W. Jackson (Hewlett-Packard Laboratories) surveyed the beginnings of photothermal deflection spectroscopy for studies of the defect states in the bandgap, and G. Cody (Rutgers University and Exxon) provided a historical overview of optical absorption for studies of the Urbach edge and disorder. In addition, L. Ley (University of Erlangen) summarized the seminal contributions of photoelectron spectroscopy to the determination of the valence band density of electronic states. All these pioneering advances shaped the research directions subsequently pursued in the field. As an example, the recent rapid advances in the use of photon probes for in-situ and real time characterization of growing Si thin films were described in a special invited session by presenters H. Fujiwara (National Institute of Advanced Industrial Science and Technology), D. Levi (National Renewable Energy Laboratory), and W. Kessels (Eindhoven University of Technology). In recognition of the increasing importance of the interplay of photonics with amorphous/nanocrystalline materials and thin film devices, a new session on photonic devices has been introduced this year. S. John (University of Toronto) described photonic band gap materials with spectacular video animations, and G. Moddel (Phiar Corporation and University of Colorado) described emerging metal-insulator-metal devices for THz detection.

Additional invited presentations focused on new approaches for the fabrication of higher stability amorphous silicon-based materials and solar cells, and on the characterization of materials and cells both structurally and electronically. H. Sonobe (Mitsubishi Heavy Industries and National Institute of Advanced Industrial Science and Technology) described high stability cells with i-layers prepared from triode plasma-enhanced chemical vapor deposition, and K. Lim (Korea Advanced Institute of Science and Technology) described high stability cells obtained using protocrystalline Si:H maintained throughout the i-layer by applying multilayer deposition. These presentations demonstrate that important advances are being made in the maturing amorphous silicon cell technology through a better understanding of fabrication processes and through improved techniques for characterization. As examples, in additional invited presentations, M. Luysberg (Forschungszentrum Jülich) described the characterization of solar cell quality microcrystalline silicon using advanced electron microscopies, and Y. Hishikawa (National Institute of Advanced Industrial Science and Technology) described the characterization of the individual components of multijunction solar cells from optoelectronic analyses of the completed cells.
The symposium attracted stimulating contributed papers as well in topics relevant for solar cells, including (i) the role of hydrogen in metastability phenomena and in deposition processes, and (ii) the application of atomistic material simulations in elucidating film growth mechanisms and structure as characterized by in-situ probes. As in previous MRS Spring Symposia A, the session devoted to metastability brought unexpected results and lively discussions. In comparison with previous years’ Symposia A, however, an increasing number of contributions in 2005 Spring were devoted to (i) nanostructures, such as quantum dots and wires, and to (ii) nano/microcrystalline and poly/single crystalline films, the latter involving new concepts in crystalline grain growth and epitaxy. Device applications were highlighted in several sessions ranging from mature, such as thin film transistors, solar cells, and image sensors, operable on the meter scale, to emerging, such as memories, operable on the nanometer scale. On the latter topic, the symposium organizers congratulate the team of J. Kim and collaborators (Myongji University and Samsung), who won a Best Poster Award for Effect of Post-Oxidation of Silicon Nanocrystals as a Floating Gate of Nonvolatile Memory. As in previous Symposia A, the poster sessions were well attended, with spirited discussions lasting well into the evening.

Of the 148 papers in the 2005 Symposium A program, 72% appear in these proceedings.

An excellent overview of the photon absorption onset in amorphous silicon by G. Cody constitutes Part I. Professor Cody pioneered the measurement approach and basic understanding of the near band gap optical absorption that is in widespread use today. In recognition and appreciation, photographs of Prof. Cody taken during discussions of these concepts, in 1985 soon after their development and twenty years later, are provided following this Preface.

Subsequent Parts II-VIII of the proceedings address materials fabrication and processing-property relationships that provide insights into fabrication, often with the motivation being to develop materials optimization principles for specific applications. Parts II, III, and IV cover silicon and related thin film materials including those that are amorphous (II), nano/microcrystalline (III), and polycrystalline or epitaxial (IV). Part V includes articles on post-fabrication processing such as thermal annealing, laser annealing, and metal-induced crystallization, along with the associated processing-property relationships that support optimization principles. Parts VI and VII address the fabrication, measurement, and application of nanostructures. Part VI includes articles on nanoparticles, nanocrystals, and quantum dots, whereas Part VII includes those on wires, more advanced nanoscale structures, and photonic materials.

Heterostructures consisting of amorphous or nano/microcrystalline films on bulk single crystal or multicrystalline solid surfaces form the subject of Part VIII. Recent interest in this area has been stimulated by advances in heterojunction solar cells that exploit the technologies of amorphous silicon deposition and bulk single crystal solar cell processing.

Articles in Parts IX and X emphasize silicon-based thin film materials characterization and an understanding of material properties at a basic level. Part IX focuses on the roles of defects, impurities, and hydrogen, as well as the manifestations and origins of light-induced defect generation. Part X focuses on the optical, optoelectronic, and transport properties, including absorption, photoluminescence, electroluminescence, dark and photo conductivity, current transient spectroscopy, and time-of-flight drift mobility.
Finally Parts XI-XIII span the device applications of materials as well as analyses of
the devices themselves including thin film solar cells (XI), transistors (XII), and sensors,
detectors, and diodes (XIII). Articles on heterojunction devices appear earlier in Part VIII.

Many individuals and organizations volunteered time and donated financial support
that ensured the great success of the 2005 MRS Spring Symposium A. Preceding the
symposium, J. Conde (Instituto Superior Tecnico, Lisbon) and S. Wagner (Princeton
University) presented a tutorial on the fundamental principles of silicon thin film materials
as well as on the state of the art in applications. The symposium program was developed
with the expert assistance of the following advisors: G. Ganguly (United Solar Ovonic
Corporation), R. Weisfield (dpiX), J. Conde, and E. Schiff (Syracuse University). We are
particularly grateful to G. Ganguly and R. Weisfield for their continuous efforts devoted to
the overall organization of this symposium. In addition, the editors are indebted to the 55
expert referees and their massive effort in helping to improve the overall quality of the
submitted manuscripts within a short timeline. The invaluable contributions of the
Materials Research Society staff are also greatly appreciated. The symposium organizers
acknowledge generous financial support from Fuji Electric Company, Japan Gore-Tex, the
Materials Research Society, the National Institute of Advanced Industrial Science and
Technology (Tsukuba, Japan), the National Renewable Energy Laboratory, United Solar
Ovonic Corporation, and Voltaix, Inc. Administrative support was provided by the
University of Utah and the University of Toledo. Finally, 2005 MRS Spring Symposium A
and this volume as well would not have been possible without the tireless efforts of Mary
Ann Woof. Mary Ann’s extensive experience in administering the submission and
refereeing of these articles has been invaluable. We look forward to another stimulating
Symposium A in Spring 2006, and next year’s organizers hope to see you there!

Robert W. Collins
P. Craig Taylor
Michio Kondo
Reinhard Carius
Rana Biswas

July 2005
Dr. George Cody (right) discusses the optical properties of amorphous silicon with his friend and colleague Dr. Ben Abeles in 1985 at Exxon’s Corporate Research Laboratory in Annandale, NJ.

Twenty years later, Professor George Cody (left) discusses his 2005 MRS Spring Symposium A presentation with friend and colleague Dr. Ben Abeles.
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

Prior Materials Research Society Symposium Proceedings available by contacting Materials Research Society