Transistor Scaling—Methods, Materials and Modeling

Symposium held April 18–19, 2006, San Francisco, California, U.S.A.

EDITORS:

Scott Thompson
University of Florida
Gainesville, Florida, U.S.A.

Faran Nouri
Applied Materials Inc.
Sunnyvale, California, U.S.A.

Wen-Chin Lee
TSMC Ltd.
Hsinchu, Taiwan

Wilman Tsai
Intel Corporation
Santa Clara, California, U.S.A.

MRS
Materials Research Society
Warrendale, Pennsylvania
CONTENTS

Preface ..ix

Materials Research Society Symposium Proceedings ... x

SOI, FDSOI, SGOI, GOI, MULTI-GATE AND SCHOTTKY SD TECHNOLOGIES

* Amorphization/ Templated Recrystallization (ATR) Method for Hybrid Orientation Substrates ... 3

Systematic Characterization of Pseudomorphic (110) Intrinsic SiGe Epitaxial Films for Hybrid Orientation Technology With Embedded SiGe Source/Drain .. 13
 Qiqing (Christine) Ouyang, Anita Madan, Nancy Klymko, Jinghong Li, Richard Murphy, Horatio Wildman, Robert Davis, Conal Murray, Judson Holt, Siddhartha Panda, Meikei Ieong, and Chun-Yung Sung

Schottky Source/Drain Transistor on Thin SiGe on Insulator Integrated With HfO2/TaN Gate Stack ... 19
 Fei Gao, S.J. Lee, Rui Li, S. Balakumar, Chih-Hang Tung, Dong-Zhi Chi, and Dim-Lee Kwong

Schottky-Barrier Height Tuning Using Dopant Segregation in Schottky-Barrier MOSFETs on Fully-Depleted SOI ... 27
 Joachim Knoch, Min Zhang, Qing-Tai Zhao, and Siegfried Mantl

Visualization of Ge Condensation in SOI ... 33
 Kristel Fobelets, Benjamin Vincent, Munir Ahmad, Astolfi Christofi, and David McPhail

Structure and Process Parameter Optimization for Sub-10 nm Gate Length Fully Depleted N-Type SOI MOSFETs by TCAD Modeling and Simulation ... 39
 Yawei Jin, Lei Ma, Chang Zeng, Krishnanshu Dandu, and Doug William Barlage

*Invited Paper
PROCESS AND SUBSTRATE-INDUCED STRAINED-Si DEVELOPMENT

A Novel High-Stress Pre-Metal Dielectric Film to Improve Device Performance for Sub-65 nm CMOS Manufacturing

Young Way Teh, John Sudijono, Alok Jain, Shankar Venkataraman, Sunder Thirupapuliyur, and Harry Whitesell

Mobility Enhancement by Strained Nitride Liners for 65 nm CMOS Logic Design Features

Claude Ortolland, Pierre Morin, Franck Arnaud, Stephane Orain, Chandra Reddy, Catherine Chaton, and Peter Stolk

Process-Induced Strained P-MOSFET Featuring Nickel-Platinum Silicided Source/Drain

Rinus Tek Po Lee, Tsung-Yang Liow, Kian-Ming Tan, Kah-Wee Ang, King-Jien Chui, Qiang-Lo Guo, Ganesh Samudra, Dong-Zhi Chi, and Yee-Chia Yeo

Thermal Stability of Thin Virtual Substrates for High Performance Devices

Sarah H. Olsen, Steve J. Bull, Peter Dobrosz, Enrique Escobedo-Cousin, Rimoon Agaiby, Anthony G. O'Neill, Howard Coulson, Cor Claeyts, Roger Loo, Romain Delhougne, and Matty Caymax

Impact of Heavy Boron Doping and Nickel Germanosilicide Contacts on Biaxial Compressive Strain in Pseudomorphic Silicon-Germanium Alloys on Silicon

Saurabh Chopra, Mehmet C. Ozturk, Veena Misra, Kris McGuire, and Laurie McNeil

POSTER SESSION

Evidence of Reduced Self Heating With Partially Depleted SOI MOSFET Scaling

Georges Guegan, Romain Gwoziecki, Olivier Gonnard, Gilles Gouget, Christine Raynaud, Mikael Casse, and Simon Deleonibus

Quantum Well Nanopillar Transistors

Shu-Fen Hu and Chin-Lung Sung
Effect of Spacer Scaling on PMOS Transistors 93
Wai Shing Lau, Chee Wee Eng, David Vigar, Lap Chan,
and Soh Yun Siah

Low Temperature Silicon Dioxide Deposition and Characterization 99
Hood Chatham, Martin Mogaard, Yoshi Okuyama, and
Helmuth Treichel

BCl3/N2 Plasma for Advanced Non-Si Gate Patterning 105
Denis Shamiryan, Vasile Paraschiv, Salvador Eslava-Fernandez,
Marc Demand, Mikhail Baklanov, and Werner Boullart

Layer Transfer of Hydrogen-Implanted Silicon Wafers by
Thermal-Microwave Co-Activation .. 111
Y.Y. Yang, C.H. Huang, Y.-K. Hsu, S.-J. Jeng, C.-C. Tai,
and T.-H. Lee

CHARACTERIZATION OF NEW MATERIALS
AND STRUCTURES

Introduction of Airgap Deeptrench Isolation in STI Module
for High Speed SiGe : C BiCMOS Technology .. 119
Eddy Kunnen, Li Jen Choi, Stefaan Van Huylenbroeck,
Andreas Piontec, Frank Vleugels, Tania Dupont,
Katia Devriendt, Xiaoping Shi, Serge Vanhaeleadersch,
and Stefaan Decoutere

Low Temperature Selective Si and Si-Based Alloy Epitaxy
for Advanced Transistor Applications .. 125
Yihwan Kim, Ali Zojaji, Zhiyuan Ye, Andrew Lam,
Nicholas Dalida, Errol Sanchez, and Satheesh Kuppurao

Nano-Scale MOSFET Devices Fabricated Using a Novel
Carbon-Nanotube-Based Lithography ... 131
Jaber Derakhshandeh, Yaser Abdi, Shams Mohajerzadeh,
Mohammad Beikahmad, Aslakan Behnam, Ezatollah Arzi,
Michael D. Robertson, and C.J. Bennett

Electron Thermal Transport Properties of a Quantum Dot 137
Xanthippi Zianni
MODELING AND METROLOGY

Using Quantitative TEM Analysis of Implant Damage to Study Surface Recombination Velocity in Silicon
Jennifer Lee Gasky, Sophya Morghem, and Kevin Jones

Diffraction From Periodic Arrays of Oxide-Filled Trenches in Silicon: Investigation of Local Strains
Michel Eberlein, Stephanie Escoubas, Marc Gailhanou, Olivier Thomas, Pascal Rohr, and Romain Coppard

Stress and Strain Measurements in Semiconductor Device Channel Areas by Convergent Beam Electron Diffraction
Jinghong Li, Anthony Domenicucci, Dureseti Chidambarrao, Brian Greene, Nivo Rovdedo, Judson Holt, Drerren Dunn, and Hung Ng

A Physically Based Quantum Correction Model for DG MOSFETs
Markus Karner, Martin Wagner, Tibor Grasser, and Hans Kosina

* TCAD Modeling of Strain-Engineered MOSFETs
Lee Smith

Predictive Model for B Diffusion in Strained SiGe Based on Atomistic Calculations
Chihak Ahn, Jakyoung Song, and Scott T. Dunham

3D Modeling of the Novel Nanoscale Screen-Grid FET
Pei W. Ding, Kristel Fobelets, and Jesus E. Velazquez-Perez

TCAD Modeling and Simulation of Sub-100 nm Gate Length Silicon and GaN Based SOI MOSFETs
Lei Ma, Yawei Jin, Chang Zeng, Krishnanshu Dandu, Mark Johnson, and Doug William Barlage

Author Index

Subject Index

*Invited Paper
PREFACE

For the past four decades, geometric scaling of silicon CMOS transistors has enabled not only an exponential increase in circuit integration density — Moore’s Law — but also a corresponding enhancement in the transistor performance. Simple MOSFET geometric scaling has driven the industry to date. However, as the transistor gate lengths drop below 35 nm and the gate oxide thickness is reduced to 1 nm, physical limitations such as off-state leakage current and power density make geometric scaling an increasingly challenging task.

In order to continue CMOS device scaling, innovations in device structures and materials are required and the industry needs a new scaling vector. Starting at the 90 and 65 nm technology generation, strained silicon has emerged as one such innovation. Other device structures such as multi-gate FETs may be introduced to meet the scaling challenge.

Symposium D, “Transistor Scaling—Methods, Materials and Modeling,” held on April 18-19 at the 2006 MRS Spring Meeting in San Francisco, California, had 54 oral and poster presentations, including eight invited papers from industry and academic leaders. The symposium brought together materials scientists, silicon technologists and TCAD researchers to share experimental results and physical models related to state-of-the-art MOSFETs, and to discuss the new and innovative approaches necessary to continue the transistor scaling. This volume contains expanded versions of many of these presentations in the areas of technology development, metrology, characterization and modeling.

We wish to thank all our invited speakers, our contributors and our participants for a lively and stimulating symposium. We also gratefully acknowledge the financial support from TSMC, Ltd.

Scott Thompson
Faran Nouri
Wen-Chin Lee
Wilman Tsai
September 2006