Materials in Extreme Environments
Materials in Extreme Environments

Symposium held April 20–21, 2006, San Francisco, California, U.S.A.

EDITORS:

Daryush ILA
Alabama A&M University
Normal (Huntsville), Alabama, U.S.A.

Christian Mailhiot
Lawrence Livermore National Laboratory
Livermore, California, U.S.A.

Premkumar B. Saganti
Prairie View A&M University
NASA Center for Applied Radiation Research
Prairie View, Texas, U.S.A.
CONTENTS

Preface ... ix

Materials Research Society Symposium Proceedings .. x

THEORY AND MODELING
(HIGH PERFORMANCE SIMULATION)

* Radiation Shielding Analysis for Various Materials in the
 Extreme Jovian Environment .. 3
 William Atwell

Dynamical Fracture Instabilities Due to Local Hyperelasticity
 at Crack Tips ... 15
 Markus J. Buehler and Huajian Gao

Kinetics of the Nucleation and Growth of Helium Bubbles
 in bcc Iron .. 21
 Chaitanya Suresh Deo, Srinivasan G. Srivilliputhur,
 Michael Baskes, Stuart Maloy, Michael James,
 Maria Okuniewski, and James Stubbins

Experimental and Ab Initio Investigations of Osmium Diboride .. 27
 M.M. Hebbache, L. Stuparevic, D. Zivkovic, and
 M. Zemzemi

Atomistic Studies of Crack Branching at Bimaterial Interfaces:
 Preliminary Results ... 37
 Sriram Krishnan and Markus J. Buehler

Effect of Pressure on Electronic Structure of Pb_{1-x}Sn_{x}Te Alloys
 Doped With Gallium ... 43
 Evgeny Skipetrov, Alexander Golubev, Nikolay Dmitriev,
 and Vasily Slyn'ko

SYNTHESIS AND GROWTH

Evidence for a Structural Transition to a Superprotonic
 CsH_{2}PO_{4} Phase Under High Pressure .. 51
 Cristian E. Botez, Russell R. Chianelli, Jianzhong Zhang,
 Jiang Qian, Yusheng Zhao, Juraj Majzlan, and Cristian Pantea

*Invited Paper
Time Resolved Dynamics of Femtosecond Laser Ablation of Si (100) With Thin Thermal Oxide Layers (20–1200 nm)

Joel P. McDonald, Vanita R. Mistry, John A. Nees, and Steven M. Yalisove

Spatially Resolved MicroDiffraction Analysis of the Plastic Deformation in the Shock Recovered Al Single Crystal

R.I. Barabash, G.E. Ice, W. Liu, J. Belak, and M. Kumar

Rapid Synthesis of Dielectric Films by Microwave Assisted CVD

Nicholas Ndiege, Vaidyanathan Subramanian, Mark Shannon, and Rich Masel

Improvement on Thermoelectric Characteristics of Layered Nanostructure by Ion Beam Bombardment

Sol-Gel Synthesis of Thick Ta_2O_5 Films for Photonic Band Gap Materials

Nicholas Ndiege, Tabitha Wilhoite, Vaidyanathan Subramanian, Mark Shannon, and Rich Masel

DIAGNOSTICS AND NOVEL CHARACTERIZATION TECHNIQUES

A Novel Mechanical Method to Measure Shear Strength in Specimens Under Pressure

Juan Pablo Escobedo, David Field, David Lassila, and Mary Leblanc

Surface Characterization of Silicon Carbide Following Shallow Implantation of Platinum Ions for High Temperature Hydrogen Sensing Applications

Claudiu Muntele, Satilmis Budak, Iulia Muntele, and Daryush ILA

SiC Based Neutron Flux Monitors for Very High Temperature Nuclear Reactors

Wolfgang Windl, Behrooz Khorsandi, Weiqi Luo, and Thomas E. Blue
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Testing and Microstructure of Heat-Treatable Aluminum</td>
<td>117</td>
</tr>
<tr>
<td>Periodic Cellular Metal</td>
<td></td>
</tr>
<tr>
<td>B.A. Bouwhuis and G.D. Hibbard</td>
<td></td>
</tr>
</tbody>
</table>

* Effects of Extreme Radiation Environment on Composite Materials | 123 |
| Jianren Zhou, Jerrel Moore, Vernon Calvin, Richard Wilkins, | |
| Sofia Martinez Vilarino, Yang Zhong, Brad Gersey, and | |
| Sheila Thibeault | |

Study of the Effects of Various Nanopowders in the Properties of GPC | 135 |
Renato Amaral Minamisawa, Bopha Chhay, Iulia Muntele,	
Lawrence Holland, Robert Lee Zimmerman, Claudiu Muntele,	
and Daryush ILA	

Chemical, Mechanical and Electrical Properties of Glassy Polymeric | 141 |
Carbon	
Iulia C. Muntele, Claudiu I. Muntele, Renato Minamisawa, Bopha	
Chhay, and Daryush ILA	

ENVIRONMENTAL EFFECTS (TEMPERATURE, RADIATION, CORROSION, | |
| EROSION, AND PRESSURE) | |

Metallurgical and Corrosion Studies of Modified T91 Grade Steel | 149 |
| Pankaj Kumar, Debajyoti Maitra, and Ajit K. Roy | |

A Novel Method for the Diffusion of Boron in 60–80 Micron Size | 155 |
Natural Diamond Type II/A Powder	
Adrian E. Mendez, Mark A. Prelas, Michael Glascock, and	
Tushar K. Ghosh	

The Corrosion Behavior of Nickel-Base Austenitic Alloys for Nuclear | 161 |
| Hydrogen Generation | |
| Rama S. Koripelli, Joydeep Pal, and Ajit K. Roy | |

Solar Effects on Tensile and Optical Properties of Hubble Space | 171 |
Telescope Silver-Teflon Insulation	
Kim K. de Groh, Joyce A. Dever, Aaron Snyder, Sharon Kaminski,	
Catherine E. McCarthy, Allison L. Rapoport, and Rochelle N.	
Rucker	
Surface Modification of Glassy Polymeric Carbon by Glow Discharge

Nanostructural Evolution of Au on Silica Surfaces Exposed to Low Energy Ions

Effect of MeV Si Ion Bombardment on Thermoelectric Characteristics of Sequentially Deposited SiO2/Au,SiO2(1-x)
S. Budak, B. Zheng, C. Muntele, Z. Xiao, I. Muntele, B. Chhay, R.L. Zimmerman, L.R. Holland, and D. ILA

Damage Effects of Ionizing Radiation in Polymer Film Electrets
Marco Aurélio Parada, Renato Amaral Minamisawa, Marcos Vasques Moreira, Adelaide de Almeida, Iulia Muntele, and Daryush ILA

Author Index

Subject Index
PREFACE

Symposium II, “Materials in Extreme Environments,” was held April 20–21 at the 2006 MRS Spring Meeting in San Francisco, California.

This symposium brought together communities investigating the fundamental properties and response of materials in extreme environments such as static and dynamic high pressure, high strain and high strain-rates, high radiation and electromagnetic fields, high and low temperatures, corrosive conditions, environments causing embrittlement, and environments containing atomic oxygen. The symposium attracted scientists from a broad spectrum of fields of research including space science, planetary science, high-pressure research, shock physics, ultrafast science, and energetic materials research. The investigations of the behavior of materials in extreme environments is an extremely active and vibrant field of research because it is now possible to create in the laboratory conditions of pressure, temperature, and radiation such as those found in, for example, planetary interiors and in space. Moreover, advanced simulation methods, coupled with high-performance computing platforms, now afford predictions — on a first-principles basis — of the properties of materials in extreme environments.

We appreciate the support of Lawrence Livermore National Lab, NASA, Alabama A&M University Research Institute, Alabama A&M University, and the Center for Irradiation of Materials at AAMU, Prairie View A&M University, and all others who provided financial funding for the organization of this symposium. Also, thanks to everyone who contributed to the success of this symposium.

Daryush ILA
Christian Mailhiot
Premkumar B. Saganti

August 2006