Microelectromechanical Systems—Materials and Devices II
Microelectromechanical Systems—Materials and Devices II

Symposium held December 1–2, 2008, Boston, Massachusetts, U.S.A.

EDITORS:

Srikar Vengallatore
McGill University
Montreal, Canada H3A 2K6

Jörg Bagdahn
Fraunhofer Center for Silicon Photovoltaics
Halle (Saale), Germany

Norman F. Sheppard Jr.
MicroCHIPS, Inc.
Bedford, Massachusetts, U.S.A.

S. Mark Spearing
University of Southampton
Southampton, United Kingdom
CONTENTS

Preface xi

Materials Research Society Symposium Proceedings xii

MATERIALS AND PROCESSES FOR MEMS

* Commercial MEMS Case Studies: The Impact of Materials, Processes and Designs 3
 Jack Martin

 Steve Stoffels, George Bryce, Rita Van Hoof, Bert Du Bois, Robert Mertens, Robert Puers, Harrie A. Tilmans, and Ann Witvrouw

Dicing of Fragile MEMS Structures 19
 Peter Lange, Norman Marenco, Sven Gruenzig, Stephan Warnat, and Thilo Semperowitsch

MICRODEVICES AND MICRO/NANOFUIDICS

* BioMEMS Technologies for Regenerative Medicine 27
 Jeffrey T. Borenstein

POSTER SESSION

Design and Fabrication of MEMS Piezoelectric Rotational Actuators 41
 Danny Gee, Wayne Churaman, Luke Currano, and Eugene Zakar

Measurement and Analysis of Structural Damping in Silicon Carbide Microresonators 47
 Sairam Prabhakar, Frederic Nabki, Mourad El-Gamal, and Srikar Vengallatore

*Invited Paper
Fabrication and Hot Switching Behavior of Electroplated Gallium Spheres for MEMS
Yoonkap Kim and David Bahr

Fast and Controlled Integration of Carbon Nanotubes Into Microstructures
Wenjun Xu, Chang-Hyeon Ji, Richard Shafer, and Mark Allen

Through Silicon Vias in Micro-Electromechanical Systems
Stephan Warnat, Ramona Ecke, Norman Marenco, Sven Gruenzig, Wolfgang Reinert, and Peter Lange

Effects of Aspect Ratio of Micro-Sized Photoresist Patterns on Bond Strength Between a Si Substrate with AFM Fracture Observation
Chiemi Ishiyama, Akinobu Shibata, Masato Sone, and Yakichi Higo

Resonance Fatigue Testing of Cantilever Specimens Prepared From Thin Films
Kwangsik Kwak, Masaaki Otsu, and Kazuki Takashima

Bending of Pd-Based Thin Film Metallic Glasses by Laser Forming Process
Yuki Ide, Masaaki Otsu, Junpei Sakurai, Seiichi Hata, and Kazuki Takashima

Droplet Formation at Microfluidic T-Junctions
Yu Xiang and David A. LaVan

Controlling the Wrinkling of the Bilayer Thin Films Electrothermally
Shravan Chintapatla, John F. Muth, and Leda M. Lunardi
Thermal Bubble Nucleation in Nanochannels: Simulations and Strategies for Nanobubble Nucleation and Sensing ... 103
Manoj Sridhar, Dongyan Xu, Anthony B. Hmelo, Deyu Li, and Leonard C. Feldman

Rapid Cell Manipulation by Rotating Nanowires ... 109
Hansong Zeng, Joshua Ebel, and Yi Zhao

Novel Technique to Determine Elastic Constants of Thin Films ... 115
Jozef Keckes, Klaus Martinschitz, Christian Mitterer, and Rostislav Daniel

Surface Treated PDMS by UV-Vis Light Aplied to Microfluidic Device ... 121
Seisuke Kano, Sohei Matsumoto, and Naoki Ichikawa

Metal Wafer Bonding for MEMS Applications ... 127
Viorel Dragoi, Gerald Mittendorfer, Franz Murauer, Erkan Cakmak, and Eric Pabo

Effect of Process Variables on Glass Frit Wafer Bonding in MEMS Wafer Level Packaging ... 133
Sid Sridharan, Jim Henry, John Maloney, Bob Gardner, Keith Mason, Viorel Dragoi, Eric Pabo, Erkan Cakmak, and Jurgen Burggraf

Charging Processes in Silicon Nitride Films for RF-MEMS Capacitive Switches: The Effect of Deposition Method and Film Thickness ... 141
Usama Zaghloul, George Papaioannou, Robert Plana, Fabio Coccetti, Patrick Pons, and Aissa Belarni

A Perturbation-Based Method for Extracting Elastic Properties During Spherical Indentation of an Elastic Film/Substrate Bilayer ... 147
Jae Hun Kim, Andrew Gouldstone, and Chad S. Korach
Microfabrication of Si/SiO2—Spherical Shells as a Path to Sub-mm³ Autonomous Robotic Systems .. 153
Vladimir Vasilyev, James R. Reid, and Richard T. Webster

Transport of Charged Species Across Solid-State Nanopores .. 159
Daisy Fung, Eyup Akdemir, Michael Vitarelli, Eugene Sosnov, and Shaurya Prakash

Fabrication and Piezoelectric Characterization of AlN Mesa Structures .. 163

Investigating the Stress and Crystal Quality of AlN Air-Bridges Through Micro-Raman Scattering .. 169
Sridhar Kuchibhatla, L.E. Rodak, and D. Korakakis

Aluminum Nitride Thin Film Based Surface Acoustic Wave Sensors .. 175
A. Kabulski, V.R. Pagán, D. Cortes, R. Burda, O.M. Mukdadi, and D. Korakakis

Active Field Effect Capacitive Sensors for High-Throughput, Label-Free Nucleic Acid Analysis 181
Manu Sebastian Mannoor, Teena James, Dentcho V. Ivanov, Bill Braunlin, and Les Beadling

Growth of Epitaxial Potassium Niobate Film on (100)SrRuOx/(100)SrTiO3 by Hydrothermal Method and Their Electromechanical Properties .. 187
Mutsumo Ishikawa, Shintaro Yasui, Satoru Utsugi, Takashi Fujisawa, Tomoaki Yamada, Takeshi Morita, Minoru Kurosawa, and Hiroshi Funakubo

Bio-Compatible Micro-Sensor for Blood Pressure Measurement Using SiC Technology 193
Gary L. Harris, Nupur Basak, Ken Wise, and James Griffin
MICRO/NANOMECHANICS

* CMOS-Integrated Stress Sensor Systems for Mechanical Sensing and Packaging Reliability Testing ... 201
 Oliver Paul, Pascal Gieschke, and Benjamin Lemke

Evaluation of the Mechanical Properties of Aluminum Thin Films as a Function of Strain Rate Using the Wafer-Scale Microtensile Technique ... 211
 Joao Gaspar, Marek E. Schmidt, Jochen Held, and Oliver Paul

Micro Tensile Tests on Aluminium Thin Films: Tensile Device and In Situ Observations .. 217
 Michel T. Ignat, Sabine Lay, Francine Roussel d’Herbey, Cedric Seguineau, Christophe Malhaire, Jean Michel Desmarres, Xavier Lafontan, and Sebastiano Brida

Strength and Fatigue Life of Nanocrystalline Titanium/Platinum Multilayer Membranes for Implantable MEMS Reservoir Array Devices .. 225
 Karl Yoder, John Maloney, and Jonathan Coppeta

MEMS RELIABILITY AND TRIBOLOGY

Investigation of Gold Sputter Coated Vertically Aligned Multi-Walled Carbon Nanotubes for RF MEMS Contact Surfaces .. 233
 Esa Yunus, S. Mark Spearing, and John McBride

An Improved Nanotribological System for Hard Disk Drives .. 239
 Xuan Li and James Economy

Author Index .. 245

Subject Index ... 247

*Invited Paper
PREFACE

Over the past fifteen years, Microelectromechanical Systems (MEMS) have transitioned from occupying a technology niche to having major industrial significance. The worldwide market for MEMS is now approximately $10 billion, and the total value of systems enabled by MEMS is several orders of magnitude higher than this figure. Initially, commercially successful MEMS utilized pre-existing materials and processes derived from conventional silicon-based semiconductor microelectronics. As the market has grown the material and process sets have broadened and departed from their semiconductor roots. The opportunities created by this broadening have generated a vibrant research community working on new materials and processes. In addition, during this period, MEMS and microfabrication have become important tools for the development and characterization of materials in general. Beginning in 1998, a series of Materials Research Society symposia has documented these trends. This proceedings volume reports on research presented at the latest of these symposia, Symposium GG, "Microelectromechanical Systems—Materials and Devices II," which was held December 1–2 at the 2008 MRS Fall Meeting in Boston, Massachusetts.

The topics covered by the symposium and in these proceedings provide an accurate reflection of the breadth of topics currently under investigation in this field. Many novel materials and accompanying processes are discussed, as well as detailed analyses of more conventional materials and processes. A consistent theme in previous symposia has been the need to conduct accurate material property assessment at the relevant length scales and the need for suitable metrology tools to support the introduction of new materials. These topics are well represented in the present proceedings. We also note the increasing trend towards the inclusion of papers in the proceedings that demonstrate the close coupling between the materials, processes and the MEMS they have been developed for. The growth in the number of papers with this character is a positive indication of the highly interdisciplinary nature of the field and also the extent to which researchers in the community have embraced the need to address system design issues as well as fundamental material science.

There is every indication that the continued growth of MEMS as an important area of technology will continue to provide a strong motivation for the accompanying development of materials and processes. We fully expect that the MRS symposium will also continue to provide a record of these developments.

Srikar Vengallatore
Jörg Bagdahn
Norm Sheppard
S. Mark Spearing

March 2009
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

