Probing Mechanics at Nanoscale Dimensions
Probing Mechanics at Nanoscale Dimensions

Symposium held April 14–17, 2009, San Francisco, California, U.S.A.

EDITORS:

Nobumichi Tamura
Lawrence Berkeley National Laboratory
Berkeley, California, U.S.A.

Andrew Minor
University of California, Berkeley and
Lawrence Berkeley National Laboratory
Berkeley, California, U.S.A.

Conal Murray
IBM T.J. Watson Research Center
Yorktown Heights, New York, U.S.A.

Lawrence Friedman
The Pennsylvania State University
University Park, Pennsylvania, U.S.A.
Preface ... ix

Acknowledgments ... xi

Materials Research Society Symposium Proceedings ... xii

Effect of Oxygen on Nanoscale Indentation-Induced Phase Transformations in Amorphous Silicon ... 1
Simon Ruffell and Jim Williams

Measuring Local Mechanical Properties Using FIB Machined Microcantilevers ... 7
David E. Armstrong, Steve G. Roberts, and Angus J. Wilkinson

Deformation Mapping in Micro- and Nanoscale Fibers .. 15
Christina Garman, Natalie Bindert, Adhira Sunkara, Leocadia Paliulis, and Donna M. Ebenstein

* Methods to Measure Mechanical Properties of NEMS and MEMS: Challenges and Pitfalls ... 21
Ingrid De Wolf, Stanislaw Kalicinski, Jeroen De Coster, and Herman Oprins

UV Raman Spectroscopy Study of Strain Induced by Buried Silicon Nitride Layer in the BOX of Silicon-On-Insulator Substrates 33
Vincent Paillard, Jesse Groenen, Pascal Puech, Younes Lamrani, Marek Kostrzewa, Julie Widiez, Jean-Charles Barbé, Chrystel Deguet, Laurent Clavelier, and Bruno Ghyselen

Geometrical Critical Thickness Theory for the Size Effect at the Initiation of Plasticity ... 39
Ting Zhu, Bruno Ehrler, Andy Bushby, and Dave Dunstan

Computational Nanomechanics of Graphene Membranes 45
Romain Perriot, Xiang Gu, and Ivan I. Oleynik

* Invited Paper
On the Effects of Dislocation Density on Micropillar Strength ..51
Amine Benzerga

Measuring Elastic Properties of Highly Metastatic Cells Using Nano-Capillary Wrinkling ..63
Nan Iyer, Katelyn Cooper, Jianing Yang, and Frederic Zenhausern

Universal Scaled Strength Behavior for Micropillars and Nanoporous Materials ..69
Brian Derby and Rui Dou

Correlation Between Activation Volume and Pillar Diameter for Mo and Nb BCC Pillars ..75
Andreas S. Schneider, Blythe G. Clark, Carl P. Frick, and Eduard Arzt

Nano-Meter Scale Plasticity in KBr Studied by Nanoindentor and Force Microscopy ...81
Praveena Manimunda, Tobin Filleter, Philip Egberts, Vikram Jayaram, Sanjay K. Biswas, and Roland Bennewitz

Stress-Strain Behavior of Individual Electrospun Polymer Fibers Using Combination AFM and SEM87
Asa H. Barber, Fei Hang, Dun Lu, and Shuang W. Li

Measuring the Glass-Transition Temperature in Electrospun Polyvinyl Alcohol Fibers Using AFM Nanomechanical Bending Tests ..93
Asa H. Barber and Wei Wang

In-Situ TEM Investigation of Deformation Behavior of Metallic Glass Pillars ..99
Changqiang Chen, Yutao Pei, and Jeff De Hosson

Could Life Originate Between Mica Sheets?: Mechanochemical Biomolecular Synthesis and the Origins of Life105
Helen G. Hansma

Malgorzata Kopycinska-Müller, Andre Striegler, Arnd Hörrich, Bernd Köhler, Norbert Meyendorf, and Klaus J. Wolter

Author Index

Subject Index
These proceedings are a record of Symposium II, “Probing Mechanics at Nanoscale Dimensions,” held April 14–17 at the 2009 MRS Spring Meeting in San Francisco, California.

Mechanical properties and the reliability of materials greatly depend on the details of their microstructure. However, most engineered materials, which are often polycrystalline and multiphase in nature and have undergone a number of processing steps, are extremely complex and inhomogeneous at the local level. The precise relationship between microstructure and physical properties for these types of materials is an issue that becomes even more critical as device dimensions rapidly decrease toward nanoscale dimensions (nanomaterials and NEMS).

During the last decade, new experimental tools have emerged, allowing us to access information on the microstructure and state of deformation of materials at a fine spatial resolution ranging from microns down to tens of nanometers. In parallel, developments in computational materials simulation are now able to incorporate discretization (grain, grain boundaries, and defects) into modeling, which is a necessary step to obtain a thorough multiscale, theoretical understanding of material properties. This symposium was aimed to cover both the theoretical and experimental aspects on how to define and measure stress, strain, and the deformation of materials at the appropriate microstructural level of grain, grain boundaries, and other defects.

The order of the papers in this volume follows the order of their presentation at the MRS Meeting. Papers presented during posters sessions are at the end of the proceedings.

Nobumichi Tamura
Andrew Minor
Conal Murray
Lawrence Friedman

June 2009
ACKNOWLEDGMENTS

We would like to thank all the people who contributed to make this symposium a success: the speakers and poster presenters for their outstanding presentations at the meeting, the authors who devoted time and energy to further contribute to the present proceedings volume, the session chairs who did a wonderful job in making sure the symposium was held in a timely manner, the reviewers who made sure that the technical papers included in these proceedings are of outstanding quality, the Materials Research Society staff and Meeting Chairs who made sure that the organization of a symposium was a pleasant experience for us, the symposium assistants for the technical support provided during the meeting and last but not least, the following sponsors for their generous financial contribution:

Air Force Office of Scientific Research
Hysitron Inc
IBM T.J. Watson Research Center