Lean thinking is a powerful method that allows organisations to improve the productivity, efficiency and quality of their products or services. Achieving these benefits requires good teamwork, clear communication, intelligent use of resources and a commitment to continuous improvement. This book shows how lean thinking can be applied in practice, highlighting the key challenges and pitfalls.

The authors, based at a leading centre for lean enterprise research, begin with an overview of the theory of lean thinking. They then explain the core tools and techniques and show how they can be applied successfully. The detailed implementation of lean thinking is illustrated by several case studies, from a range of industries, in which the authors had unprecedented access to the management teams.

With its focus on implementation and practical solutions, this book will appeal to managers at all levels, as well as to business students and researchers in lean thinking.

Nick Rich is RCUK Innovative Manufacturing Fellow and Director of the Innovative Manufacturing Research Centre, Cardiff University.

Nicola Bateman is a senior research fellow at the Lean Enterprise Research Centre, Cardiff University.

Ann Esain is a senior research fellow at the Lean Enterprise Research Centre, Cardiff University.

Lynn Massey is a RCCPI Research Fellow at Griffith University Queensland Australia.

Donna Samuel is a senior research associate at Lean Enterprise Research Centre Cardiff Business School, Cardiff University.
Contents

List of boxes page vi
List of figures vii
List of tables ix
Glossary x

1 Introduction 1
2 Understanding the lean journey 11
3 Understanding your organisation 32
4 Laying the foundation stone of CANDO 60
5 Visual management and performance measurement 80
6 Problem solving, TQM and Six Sigma 95
7 Pull systems 122
8 Total productive manufacturing (TPM) 141
9 Sustainability 163
10 Group learning 185
11 Reflections and future challenges 200

References 207
Index 210
Boxes

2.1 Pressures for change page 12
2.2 The five principles of lean thinking ... 15
2.3 Toyota seven wastes 17
2.4 The management activity list 24
3.1 Buying into lean 45
3.2 Establishing a clear message 46
3.3 The change model 53
4.1 Cosmetics and CANDO 62
4.2 Clean up at Health Products 65
4.3 Health Products and arranging the workplace 66
4.4 Neatness stage at Health Products 66
4.5 Promoting champions 68
4.6 Maintenance repair and overhaul facility .. 71
4.7 Involving operators and the consensus approach 72
4.8 Medical Consumables and the MD’s office ... 73
4.9 Mornington Cereals 75
4.10 Mornington Cereals (too much talking and not enough action) 76
4.11 Views from the Learn 2 companies 78
5.1 Too many measures! What’s the most important? 90
5.2 The daily walk 91
6.1 Air Repair mapping 97
6.2 Medical Devices case 100
6.3 Steel corporation case 113
6.4 Medical Devices case 117
6.5 Air Repair journey of improvement 118
7.1 High variety: low volume pull systems 136
8.1 TPM definitions 146
8.2 Calculating OEE 151
8.3 Single point lesson (SPL) 157
9.1 Definitions .. 164
9.2 Visual representation of lean implementation 168
Figures

1. Knowledge flows within the Learn 2 network
2. The house of lean
3. Lean improvement stages
4. Who’s doing what?
5. Value stream mapping (adapted from Rother and Shook, 1998)
6. What customers want passes horizontally through departments
7. The overall production system features
8. The lean model
9. CANDO linkages
10. CANDO red tag (Rich, 1999)
11. On going improvement measurement
12. The Steering Committee structure
13. Role of visual management
14. Placement square
15. A typical communications board
16. Data trail
17. Graph with target
18. Visual management linkages
19. Quality filter map for Air Repair 2000
20. Problem solving at the different levels of an organisation
21. Problem resolution summary board
22. Problem solving is integral to the achievement of improvement and change
23. Quality links in the lean journey
24. The seven basic tools of quality (Bicheno and Catherwood, 2004)
25. Ishikawa diagram (also known as a fishbone or cause and effect diagram)
26. Converting a problem into a statistic to provide a practical solution
27. Primary source of variation
28. New philosophy of quality
29. Measure systems analysis

page 4
26
29
48
51
56
58
61
62
64
69
70
81
83
87
88
92
93
98
99
103
104
106
108
108
111
112
113
115
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.12</td>
<td>ANOVA results for a gauge R&R review (output from Minitab)</td>
<td>116</td>
</tr>
<tr>
<td>6.13</td>
<td>Prioritisation matrix for final testing</td>
<td>117</td>
</tr>
<tr>
<td>6.14</td>
<td>A multi-vari chart is a tool identified for use in the seven basic tools of quality (output from Minitab)</td>
<td>118</td>
</tr>
<tr>
<td>6.15</td>
<td>Combination of quality and lean activities to improve the cost of quality</td>
<td>120</td>
</tr>
<tr>
<td>6.16</td>
<td>Supply chain development and integration</td>
<td>120</td>
</tr>
<tr>
<td>7.1</td>
<td>The house of lean</td>
<td>123</td>
</tr>
<tr>
<td>7.2</td>
<td>The lean wheel</td>
<td>123</td>
</tr>
<tr>
<td>7.3</td>
<td>The sequence of kanban</td>
<td>126</td>
</tr>
<tr>
<td>7.4</td>
<td>Kanban levelling box (heijunka)</td>
<td>128</td>
</tr>
<tr>
<td>7.5</td>
<td>Kanban flow</td>
<td>129</td>
</tr>
<tr>
<td>7.6</td>
<td>Simple kanban floor squares</td>
<td>130</td>
</tr>
<tr>
<td>7.7</td>
<td>Signal kanban (slow cycle control)</td>
<td>132</td>
</tr>
<tr>
<td>7.8</td>
<td>Alternative kanban signals</td>
<td>133</td>
</tr>
<tr>
<td>8.1</td>
<td>House of lean</td>
<td>142</td>
</tr>
<tr>
<td>8.2</td>
<td>The lean wheel</td>
<td>142</td>
</tr>
<tr>
<td>8.3</td>
<td>Asset criticality</td>
<td>158</td>
</tr>
<tr>
<td>9.1</td>
<td>Structure of lean implementation</td>
<td>164</td>
</tr>
<tr>
<td>9.2</td>
<td>Sustainability of PI activities</td>
<td>165</td>
</tr>
<tr>
<td>9.3</td>
<td>Rolling out from PI activities to strategic level</td>
<td>167</td>
</tr>
<tr>
<td>9.4</td>
<td>Enablers for Class A and B activities</td>
<td>169</td>
</tr>
<tr>
<td>9.5</td>
<td>PDCA for shopfloor ideas</td>
<td>170</td>
</tr>
<tr>
<td>9.6</td>
<td>Enablers for Class A activities</td>
<td>172</td>
</tr>
<tr>
<td>9.7</td>
<td>Frequency graph of enablers</td>
<td>174</td>
</tr>
<tr>
<td>9.8</td>
<td>Frequency graph for inhibitors</td>
<td>175</td>
</tr>
<tr>
<td>9.9</td>
<td>Frequency chart of engaging issues</td>
<td>177</td>
</tr>
<tr>
<td>9.10</td>
<td>Frequency chart for resolution of engaging issues</td>
<td>178</td>
</tr>
<tr>
<td>9.11</td>
<td>Resources required for full roll out of PI activities</td>
<td>180</td>
</tr>
<tr>
<td>9.12</td>
<td>Sustainability links to other chapters</td>
<td>183</td>
</tr>
<tr>
<td>10.1</td>
<td>Primary knowledge flows within the Learn 2 research programme</td>
<td>187</td>
</tr>
</tbody>
</table>
Tables

3.1 Design logic of the traditional and lean firm page 34
3.2 Traditional and lean supply chain 35
3.3 Lessons from lean programme successes 37
3.4 Waste and appropriate maps 50
4.1 CANDO and its various forms 63
8.1 The Toyota seven wastes and TPM 148
8.2 Involvement and roles 150
8.3 Eight major pillars 153
9.1 Processes to incorporate enablers 181
10.1 MOPS and Learn 2 192
10.2 Champions and agents understanding of lean 193
10.3 Benefits 198
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>A means of categorising products, failures or other group of observed issues such that the most important sources can be identified in terms of the impact and volume. ‘A’ classifications are therefore the most important and ‘C’ the least and this allows problem solving to be directed to those issues/products with the most potential benefit to the company.</td>
</tr>
<tr>
<td>agile</td>
<td>The ability to accommodate change responsively in terms of volume and mix flexibility.</td>
</tr>
<tr>
<td>Andon</td>
<td>A subset of visual control management which is used to signal abnormalities with the production process or to identify deviations between the desired pace of the work station/assembly line and takt time requirements.</td>
</tr>
<tr>
<td>autonomous</td>
<td>Those activities of routine equipment maintenance conducted by individuals and small groups to a level of safety and quality assurance established by the business/engineering specialists. This is the front line of maintenance activity and is used to detect and correct abnormalities quickly.</td>
</tr>
<tr>
<td>CANDO</td>
<td>Also known as the 5S system or workplace discipline and control cell manufacturing.</td>
</tr>
<tr>
<td>cellular</td>
<td>A layout choice which involves the co-located configuration of machinery in a manner that the output of one machine directly feeds the next or feeds a small buffer before the next. The ideal cell adopts an approach of ‘one piece flow’.</td>
</tr>
<tr>
<td>changeover</td>
<td>The time taken from the last good piece produced from the existing batch of work at a machine to the first ‘accepted’ good product from the new batch. A concept developed by Shigeo Shingo.</td>
</tr>
<tr>
<td>constraint</td>
<td>The bottleneck or limiting factor (either equipment, human or management policy) which limits the throughput and output of production. A concept developed by Eli Goldratt using the ‘theory of constraints’ approach to operations management.</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
978-1-107-40719-0 - Lean Evolution: Lessons from the Workplace
Nick Rich, Nicola Bateman, Ann Esain, Lynn Massey and Donna Samuel
Frontmatter
More information
www.cambridge.org

© in this web service Cambridge University Press
continuous improvement (kaizen) From the Japanese meaning ‘virtuous circle’. Meaning small step changes in performance as a result of continued analysis and process changes to improve the efficiency and effectiveness of production or administrative activities.

control item An element of a product or production system used to assess whether the system is working within an agreed specification. Used to prompt action upon detection of variation which may cause defects or instability.

defects The manifestation of an error within the production system which results in ‘un-saleable’ products or stopped administrative process. An error represents a deviation, by humans or machines.

error proofing The design of processes and devices which prevent the creation of errors and defects through physical means, i.e. the prevention of accidental consumption of tablets through the introduction of caps to medicine bottles that can only be operated by adults (push, twist, and turn) or the use of the physical size of the product to prevent misalignment (i.e. a 3.5 inch floppy disk can only be entered into a 3.5 inch drive in one exact way).

Just-In-Time The generic name given to the logistics of the Toyota production system as opposed to the lean enterprise which covers the production, management and supply chain processes.

kaikaku From the Japanese meaning radical break to the circle of improvement. This approach is a very condensed and intense activity conducted within the factory to make an instant improvement in performance and to demonstrate that change can be instantaneous.

kanban From the Japanese meaning ‘ticket’ and referring to the information cards used to trigger the removal and manufacturing of replenishments within a manufacturing system. The cards cycle between internal customers and suppliers to ensure production occurs Just-In-Time.

lead time The total time a piece of material resides in the production system from start of production to finished goods. Also used as quoted ‘order receipt to delivery time’ when interacting with customers and this includes all administrative processes, manufacturing, queuing and despatch activities.

LERC level scheduling The Lean Enterprise Research Centre, Cardiff Business School. The lean approach to smoothing production requirements over a time period so that the same amount is produced every week etc. The logic is not to batch production and incur long periods between making the same product, but to cycle quickly through the entire range of products so as to minimise delays and limit any queues.

MRP Material requirements planning. A computerised scheduling system, originated in the 1950s, which served to time the arrival of materials from
suppliers and from within the factory through computer-calculated and printed schedules. These systems did not calculate whether capacity was available to produce.

MRPII Manufacturing resources planning. An extension of MRP which utilised advancement in computing power of the 1970s and also more sophisticated algorithms to find the ‘best fit’ schedule that matched customer delivery dates and available capacity to produce.

NVA Non-value adding or actions conducted by the organisation that adds no value to the product and serves to increase costs. Activities for which the customer would prefer not to pay.

OEE Overall equipment effectiveness – the baseline measure of all TPM activities and a means of charting progress (through trend analysis) of improvement activities.

one piece flow The smallest manufacturing batch size and unit of flow around a cell. One piece is taken from raw to finished stage in one single loop of activity involving ‘walking’ operators that handle multiple machines to manufacture the product. It may then be processed further by another operation.

Policy deployment The process of setting a 3–5 year business goal and annual improvement challenges to all business functions. The total population of middle managers agree the key projects which will enhance the competitiveness of the firm and collaborate to ensure their execution. The hidden lesson of lean manufacturing.

product family A group of products that share a similar value stream, product characteristics and/or sales patterns. These stock-keeping units are grouped to form a band of products that are used to create volume for a cell design or a means of analysing the critical flows of materials within a factory.

pull The approach to triggering manufacturing operations using the ‘kanban’ replenishment system, whereby movements of finished products trigger re-supply from internal processes.

push The generic term used to define manufacturers that schedule production and often operate ‘make to finished stock’ operations systems.

right first time A surrogate measure for zero defects which applies to perfecting production and administrative processes such that the activity never involves an error.

single minute exchange of dies The term applied to changeover activities of less than ten minutes. This is the base line of quick changeover improvements and will lead, through re-engineering, to ‘one touch’ exchange of dies (OTED). This process is
important as it allows smaller batch sizes and more variety of production (scope) to be achieved in a single shift.

Six Sigma A powerful new approach to quality management, which represents a goal (target value) and a methodology. It fully supports lean production.

standardised work The codified and visual documentation, written by operators and specialists, to assist learning and conduct of repetitive operations. Displayed at the point of use – these documents are the basis for improvement activities as much as they are the standards that sustain a common way of working.

takt time The rate of production needed to equal the average rate of product sales to customers. This calculation is used to ensure flow processes are performing effectively or that buffers are being replenished at the desired rate.

target cost An approach to determining product features and costs using a backward process of deducting marginal, distribution costs to derive the maximum cost of production. This cost is used as a challenge to product and process designers. The objective is to meet the cost or design products with lower costs to enhance margins and profitability.

TPM An approach and methodology for creating ‘robust’ production systems through improving the technical skills of the workforce and the specifications of the manufacturing technologies employed.

TPS Toyota production system – the logic and implemented features of the originator of the lean system.

U cell The preferred layout of a lean cell due to the ability to reduce and flex the amount of labour needed through ‘walking single piece flow’ (also known as motion kaizen) by the operator.

value adding An activity for which the customer is prepared to pay – typically a transformation process within the value stream.

value stream The internal activities which must come together to produce an output and more broadly those processes within each tier of the supply chain which span raw materials production to consumer. Includes order fulfillment and design value streams.

value stream mapping A portfolio of techniques used to visualise and diagnose the current status and future potential improvements within and beyond the factory. Essentially management techniques for operations system design purposes.

visual control An approach to visualising the status of a process and to make deviation in performance readily identifiable without need for specialist training.
Examples include vehicle dashboards and warning lights which prompt the driver to stop etc.

work in process
Also called ‘work in progress’ and contains all materials held within a factory that are part finished and lie between raw and final stages. Approach is to standardise and minimise this level of materials until production flow can be used to displace the inventory.

zero defects (ZD)
The ultimate goal of all companies that seek to compete on quality of product. ZD is a measure of internal process control as much as it represents fault-free customer service to external organisations/consumers.