

Lean Evolution

Lean thinking is a powerful method that allows organisations to improve the productivity, efficiency and quality of their products or services. Achieving these benefits requires good teamwork, clear communication, intelligent use of resources and a commitment to continuous improvement. This book shows how lean thinking can be applied in practice, highlighting the key challenges and pitfalls.

The authors, based at a leading centre for lean enterprise research, begin with an overview of the theory of lean thinking. They then explain the core tools and techniques and show how they can be applied successfully. The detailed implementation of lean thinking is illustrated by several case studies, from a range of industries, in which the authors had unprecedented access to the management teams.

With its focus on implementation and practical solutions, this book will appeal to managers at all levels, as well as to business students and researchers in lean thinking.

Nick Rich is RCUK Innovative Manufacturing Fellow and Director of the Innovative Manufacturing Research Centre, Cardiff University.

Nicola Bateman is a senior research fellow at the Lean Enterprise Research Centre, Cardiff University.

Ann Esain is a senior research fellow at the Lean Enterprise Research Centre, Cardiff University.

Lynn Massey is a RCCPI Research Fellow at Griffith University Queensland Australia.

Donna Samuel is a senior research associate at Lean Enterprise Research Centre Cardiff Business School, Cardiff University.

Lean Evolution

Lessons from the Workplace

Nick Rich Nicola Bateman Ann Esain Lynn Massey Donna Samuel

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107407190

© N. Rich, N. Bateman, A. Esain, L. Massey and D. Samuel 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006 First paperback edition 2012

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-84344-7 Hardback ISBN 978-1-107-40719-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

Lis	t of boxes	<i>page</i> vi
List of figures		vii
Lis	t of tables	ix
Gla	ossary	X
1	Introduction	1
2	Understanding the lean journey	11
3	Understanding your organisation	32
4	Laying the foundation stone of CANDO	60
5	Visual management and performance measurement	80
6	Problem solving, TQM and Six Sigma	95
7	Pull systems	122
8	Total productive manufacturing (TPM)	141
9	Sustainability	163
10	Group learning	185
11	Reflections and future challenges	200
Ref	^c erences	207
Ind	ler	210

V

Boxes

2.1	Pressures for change	page 12
2.2	The five principles of lean thinking	15
2.3	Toyota seven wastes	17
2.4	The management activity list	24
3.1	Buying into lean	45
3.2	Establishing a clear message	46
3.3	The change model	53
4.1	Cosmetics and CANDO	62
4.2	Clean up at Health Products	65
4.3	Health Products and arranging the workplace	66
4.4	Neatness stage at Health Products	66
4.5	Promoting champions	68
4.6	Maintenance repair and overhaul facility	71
4.7	Involving operators and the consensus approach	72
4.8	Medical Consumables and the MD's office	73
4.9	Mornington Cereals	75
4.10	Mornington Cereals (too much talking and not enough action)	76
4.11	Views from the Learn 2 companies	78
5.1	Too many measures! What's the most important?	90
5.2	The daily walk	91
6.1	Air Repair mapping	97
6.2	Medical Devices case	100
6.3	Steel corporation case	113
6.4	Medical Devices case	117
6.5	Air Repair journey of improvement	118
7.1	High variety: low volume pull systems	136
8.1	TPM definitions	146
8.2	Calculating OEE	151
8.3	Single point lesson (SPL)	157
9.1	Definitions	164
9.2	Visual representation of lean implementation	168

νi

Figures

1.1	Knowledge nows within the Learn 2 network	page 4
2.1	The house of lean	26
2.2	Lean improvement stages	29
3.1	Who's doing what?	48
3.2	Value stream mapping (adapted from Rother and Shook, 1998)	51
3.3	What customers want passes horizontally through departments	56
3.4	The overall production system features	58
4.1	The lean model	61
4.2	CANDO linkages	62
4.3	CANDO red tag (Rich, 1999)	64
4.4	On going improvement measurement	69
4.5	The Steering Committee structure	70
5.1	Role of visual management	81
5.2	Placement square	83
5.3	A typical communications board	87
5.4	Data trail	88
5.5	Graph with target	92
5.6	Visual management linkages	93
6.1	Quality filter map for Air Repair 2000	98
6.2	Problem solving at the different levels of an organisation	99
6.3	Problem resolution summary board	103
6.4	Problem solving is integral to the achievement of improvement and	
	change	104
6.5	Quality links in the lean journey	106
6.6	The seven basic tools of quality (Bicheno and Catherwood, 2004)	108
6.7	Ishikawa diagram (also known as a fishbone or cause and effect	
	diagram)	108
6.8	Converting a problem into a statistic to provide a practical solution	111
6.9	Primary source of variation	112
6.10	New philosophy of quality	113
6.11	Measure systems analysis	115

vii

viii List of figures

6.12	ANOVA results for a gauge R&R review (output from Minitab)	116
6.13	Prioritisation matrix for final testing	117
6.14	A multi-vari chart is a tool identified for use in the seven basic tools of	117
0.17	quality (output from Minitab)	118
6.15	Combination of quality and lean activities to improve the cost of quality	120
6.16	Supply chain development and integration	120
7.1	The house of lean	123
7.2	The lean wheel	123
7.3	The sequence of kanban	126
7.4	Kanban levelling box (heijunka)	128
7.5	Kanban flow	129
7.6	Simple kanban floor squares	130
7.7	Signal kanban (slow cycle control)	132
7.8	Alternative kanban signals	133
8.1	House of lean	142
8.2	The lean wheel	142
8.3	Asset criticality	158
9.1	Structure of lean implementation	164
9.2	Sustainability of PI activities	165
9.3	Rolling out from PI activities to strategic level	167
9.4	Enablers for Class A and B activities	169
9.5	PDCA for shopfloor ideas	170
9.6	Enablers for Class A activities	172
9.7	Frequency graph of enablers	174
9.8	Frequency graph for inhibitors	175
9.9	Frequency chart of engaging issues	177
9.10	Frequency chart for resolution of engaging issues	178
9.11	Resources required for full roll out of PI activities	180
9.12	Sustainability links to other chapters	183
10.1	Primary knowledge flows within the Learn 2 research programme	187

Tables

3.1	Design logic of the traditional and lean firm	page 34
3.2	Traditional and lean supply chain	35
3.3	Lessons from lean programme successes	37
3.4	Waste and appropriate maps	50
4.1	CANDO and its various forms	63
8.1	The Toyota seven wastes and TPM	148
8.2	Involvement and roles	150
8.3	Eight major pillars	153
9.1	Processes to incorporate enablers	181
10.1	MOPS and Learn 2	192
10.2	Champions and agents understanding of lean	193
10.3	Benefits	198

İΧ

Glossary

ABC A means of categorising products, failures or other group of observed

issues such that the most important sources can be identified in terms of the impact and volume. 'A' classifications are therefore the most important and 'C' the least and this allows problem solving to be directed to those

issues/products with the most potential benefit to the company.

agile The ability to accommodate change responsively in terms of volume

manufacturing and mix flexibility.

Andon A subset of visual control management which is used to signal

abnormalities with the production process or to identify deviations between the desired pace of the work station/assembly line and takt time

requirements.

autonomous Those activities of routine equipment maintenance conducted by maintenance individuals and small groups to a level of safety and quality assurance

established by the business/engineering specialists. This is the front line of

maintenance activity and is used to detect and correct abnormalities

quickly.

CANDO Also known as the 5S system or workplace discipline and control

cellular A layout choice which involves the co-located configuration of machinery

manufacturing in a manner that the output of one machine directly feeds the next or feeds a small buffer before the next. The ideal cell adopts an approach of 'one

piece flow'.

changeover The time taken from the last good piece produced from the existing batch

of work at a machine to the first 'accepted' good product from the new

batch. A concept developed by Shigeo Shingo.

constraint The bottleneck or limiting factor (either equipment, human or

management policy) which limits the throughput and output of production. A concept developed by Eli Goldratt using the 'theory of

constraints' approach to operations management.

X

χi

Glossary

continuous improvement (kaizen)	From the Japanese meaning 'virtuous circle'. Meaning small step changes in performance as a result of continued analysis and process changes to improve the efficiency and effectiveness of production or administrative activities.
control item	An element of a product or production system used to assess whether the system is working within an agreed specification. Used to prompt action upon detection of variation which may cause defects or instability.
defects	The manifestation of an error within the production system which results in 'un-saleable' products or stopped administrative process. An error represents a deviation, by humans or machines.
error proofing	The design of processes and devices which prevent the creation of errors and defects through physical means, i.e. the prevention of accidental consumption of tablets through the introduction of caps to medicine bottles that can only be operated by adults (push, twist, and turn) or the us of the physical size of the product to prevent misalignment (i.e. a 3.5 inch floppy disk can only be entered into a 3.5 inch drive in one exact way).
Just-In-Time	The generic name given to the logistics of the Toyota production system a opposed to the lean enterprise which covers the production, management and supply chain processes.
kaikaku	From the Japanese meaning radical break to the circle of improvement. This approach is a very condensed and intense activity conducted within the factory to make an instant improvement in performance and to demonstrate that change can be instantaneous.
kanban	From the Japanese meaning 'ticket' and referring to the information cards used to trigger the removal and manufacturing of replenishments within a manufacturing system. The cards cycle between internal customers and suppliers to ensure production occurs Just-In-Time.
lead time	The total time a piece of material resides in the production system from start of production to finished goods. Also used as quoted 'order receipt to delivery time' when interacting with customers and this includes all administrative processes, manufacturing, queuing and despatch activities.
LERC level scheduling	The Lean Enterprise Research Centre, Cardiff Bussiness School. The lear approach to smoothing production requirements over a time period so that the same amount is produced every week etc. The logic is not to batch production and incur long periods between making the same product, but to cycle quickly through the entire range of products so as to minimise delays and limit any queues.
MRP	Material requirements planning. A computerised scheduling system, originated in the 1950s, which served to time the arrival of materials from

xii Glossary

	suppliers and from within the factory through computer-calculated and printed schedules. These systems did not calculate whether capacity was available to produce.
MRPII	Manufacturing resources planning. An extension of MRP which utilised advancement in computing power of the 1970s and also more sophisticated algorithms to find the 'best fit' schedule that matched customer delivery dates and available capacity to produce.
NVA	Non-value adding or actions conducted by the organisation that adds no value to the product and serves to increase costs. Activities for which the customer would prefer not to pay.
OEE	Overall equipment effectiveness – the baseline measure of all TPM activities and a means of charting progress (through trend analysis) of improvement activities.
one piece flow	The smallest manufacturing batch size and unit of flow around a cell. One piece is taken from raw to finished stage in one single loop of activity involving 'walking' operators that handle multiple machines to manufacture the product. It may then be processed further by another operation.
Policy deployment	The process of setting a 3–5 year business goal and annual improvement challenges to all business functions. The total population of middle managers agree the key projects which will enhance the competitiveness of the firm and collaborate to ensure their execution. The hidden lesson of lean manufacturing.
product family	A group of products that share a similar value stream, product characteristics and/or sales patterns. These stock-keeping units are grouped to form a band of products that are used to create volume for a cell design or a means of analysing the critical flows of materials within a factory.
pull	The approach to triggering manufacturing operations using the 'kanban' replenishment system, whereby movements of finished products trigger re-supply from internal processes.
push	The generic term used to define manufacturers that schedule production and often operate 'make to finished stock' operations systems.
right first time	A surrogate measure for zero defects which applies to perfecting production and administrative processes such that the activity never involves an error.
single minute exchange of dies	The term applied to changeover activities of less than ten minutes. This is the base line of quick changeover improvements and will lead, through re-engineering, to 'one touch' exchange of dies (OTED). This process is

xiii

Glossary

diossary	
	important as it allows smaller batch sizes and more variety of production (scope) to be achieved in a single shift.
Six Sigma	A powerful new approach to quality management, which represents a goal (target value) and a methodology. It fully supports lean production.
standardised work	The codified and visual documentation, written by operators and specialists, to assist learning and conduct of repetitive operations. Displayed at the point of use – these documents are the basis for improvement activities as much as they are the standards that sustain a common way of working.
takt time	The rate of production needed to equal the average rate of product sales to customers. This calculation is used to ensure flow processes are performing effectively or that buffers are being replenished at the desired rate.
target cost	An approach to determining product features and costs using a backward process of deducting marginal, distribution costs to derive the maximum cost of production. This cost is used as a challenge to product and process designers. The objective is to meet the cost or design products with lower costs to enhance margins and profitability.
TPM	An approach and methodology for creating 'robust' production systems through improving the technical skills of the workforce and the specifications of the manufacturing technologies employed.
TPS	Toyota production system – the logic and implemented features of the originator of the lean system.
U cell	The preferred layout of a lean cell due to the ability to reduce and flex the amount of labour needed through 'walking single piece flow' (also known as motion kaizen) by the operator.
value adding	An activity for which the customer is prepared to pay – typically a transformation process within the value stream.
value stream	The internal activities which must come together to produce an output and more broadly those processes within each tier of the supply chain which span raw materials production to consumer. Includes order fulfillment and design value streams.
value stream mapping	A portfolio of techniques used to visualise and diagnose the current status and future potential improvements within and beyond the factory. Essentially management techniques for operations system design purposes.
visual control	An approach to visualising the status of a process and to make deviation in performance readily identifiable without need for specialist training.

xiv Glossary	
	Examples include vehicle dashboards and warning lights which prompt the driver to stop etc.
work in process	Also called 'work in progress' and contains all materials held within a factory that are part finished and lie between raw and final stages. Approach is to standardise and minimise this level of materials until production flow can be used to displace the inventory.
zero defects (ZD)	The ultimate goal of all companies that seek to compete on quality of product. ZD is a measure of internal process control as much as it represents fault-free customer service to external organisations/consumers