Index

acetylcholine esterase production, 180
adaptations
  appropriate/inappropriate, 50–1
short-term, long-term disruptions and, 3
addiction
  allostatic state and, 348–9
mechanisms involved in, 40, 47
tolerance and sensitization in, 159–61
adenosine, 253–4, 255
ADHD (attention deficit, hyperactivity disorder) treatment, 56
affect, 37
African-Americans, 43–4
AL. See allostatic load
allometry, 354
allostasis
  adaptive nature of, 229
advantages over homeostasis model, 22
concept of, 1, 7, 11–12, 68–9, 89, 90, 107, 165, 346–8
criteria defining, restricting, 281
defined, 7, 18, 66, 150, 312, 346
examples of, 69, 229
health in, 54, 58
homeostasis versus, 151, 230–1, 347–8
origins of idea, 19–22, 346
pathology and, 350–1
phenomena types at question, 277–8
principles of, 26–34, 228–9
regulated, 311, 312
see-saw analogy to, 231
thermostatic analogy to, 101, 110
utility of concept, 207
see also allostatic states; predictive regulation
allostasis health model, 58
allostasic load
  allostatic states versus, 79
assessing, 80
categories, Boolean-specified, 126
concept overview, 349–50
contributing factors, 74, 313
defined, 67, 70, 73, 75, 89, 108, 152, 312, 313, 347
elevated
criteria for, 142
hostility and, 116
social relationships and, 116
dominance/neuroendocrine secretions and, 323–5
examples of, 75–8
future study possibilities
  challenge, 131–2
  longitudinal, 132–3, 143–5
  using 1*H-NMR, 138–42
glucocorticoid secretion and, 323–5
home temperature analogy to, 109–10
indicators of
  possible future, 130–2
  rationale for, 133–7
labile perturbation factors effects on, 317–21
measurement/scoring of
  approaches summarized, 114
  biomarkers used in, 115, 116
canonical weight, 120–3, 143
elevated-risk zone, 115–20, 142–3
gender-specific, 128–30
limitations to extant, 137
recursive partitioning, 123–8, 143
using 1*H-NMR spectra, 139
regulatory processing costs and, 313
reproductive life history stage effects on, 321–3
see also allostatic overload
allostastic load score, 114, 115

© in this web service Cambridge University Press www.cambridge.org
allostatic overload
amygdala glucocorticoids role in, 204–6
defined, 7, 349
example of, 9–11
indicators of, 9
sensitization and, 197–201
types of, 325
allostatic states
allostatic load versus, 79
assessing, 79, 80
contributing factors, 74, 78
defined, 7, 67, 75, 152, 153, 347
types of, 325
allostatic overload
amygdala glucocorticoids role in, 204–6
defined, 7, 349
example of, 9–11
indicators of, 9
sensitization and, 197–201
types of, 325
allostatic states
allostatic load versus, 79
assessing, 79, 80
contributing factors, 74, 78
defined, 7, 67, 75, 152, 153, 347
types of, 325
amygdala
definition, glucocorticoid involvement in, 204–6
example of, 9–11
sensitization and, 197–9
allostatic overload
amygdala glucocorticoids role in, 204–6
defined, 7, 349
example of, 9–11
indicators of, 9
sensitization and, 197–201
types of, 325
allostatic states
allostatic load versus, 79
assessing, 79, 80
contributing factors, 74, 78
defined, 7, 67, 75, 152, 153, 347
types of, 325
<table>
<thead>
<tr>
<th>Index</th>
<th>367</th>
</tr>
</thead>
<tbody>
<tr>
<td>central nervous system and, 85</td>
<td>fat in chickens and glucose/fatty acid/triglyceride levels and, 327</td>
</tr>
<tr>
<td>dangerous effects of, 70–2</td>
<td>implants in sparrows, 326, 328</td>
</tr>
<tr>
<td>elevated levels, 85</td>
<td>nongenomic membrane effects of, 194</td>
</tr>
<tr>
<td>fluid volume and, 84</td>
<td>parent-child separation and, 41</td>
</tr>
<tr>
<td>glucocorticoids and, 83–4, 327</td>
<td>recovery from acute stress and, 328</td>
</tr>
<tr>
<td>immunity and, 69, 84–5</td>
<td>snow bunting secretion of, 316</td>
</tr>
<tr>
<td>inflammation and, 84–5</td>
<td>social status and, 331</td>
</tr>
<tr>
<td>memory formation and, 72</td>
<td>stress, body conditions, and, 334</td>
</tr>
<tr>
<td>metabolism and, 85</td>
<td>cortisol actions of, 9</td>
</tr>
<tr>
<td>central nervous system catecholamines and, 85</td>
<td>as biomarker in Al challenge study, 131–2</td>
</tr>
<tr>
<td>glucocorticoids and, 81–2</td>
<td>elevated</td>
</tr>
<tr>
<td>peripheral physiology and, 358</td>
<td>depression and, 11, 116, 178, 206–7</td>
</tr>
<tr>
<td>chickens, 326</td>
<td>evening, 76</td>
</tr>
<tr>
<td>chronic fatigue syndrome, 87</td>
<td>fat distribution and, 46</td>
</tr>
<tr>
<td>circadian prediction, 32</td>
<td>fearfulness in children and, 178</td>
</tr>
<tr>
<td>circadian rhythms</td>
<td>incidence of, 47</td>
</tr>
<tr>
<td>anticipatory advantages of, 232</td>
<td>long-term effects, 3</td>
</tr>
<tr>
<td>as homeostatic states, 357</td>
<td>osteoporosis and, 116</td>
</tr>
<tr>
<td>blood pressure and, 237</td>
<td>short-term effects, 3</td>
</tr>
<tr>
<td>brain structure assays for, 246</td>
<td>glucocorticogenesis and, 327</td>
</tr>
<tr>
<td>defined, 232</td>
<td>inadequate levels, 76</td>
</tr>
<tr>
<td>food-entrainable oscillators, 248</td>
<td>CRH family receptors, 192</td>
</tr>
<tr>
<td>heart rate and, 237</td>
<td>cytokines</td>
</tr>
<tr>
<td>masking effects, 235</td>
<td>anti-inflammatory, 86</td>
</tr>
<tr>
<td>molecular genetic bases of, 240–1</td>
<td>autoimmune diseases and, 86</td>
</tr>
<tr>
<td>non-SCN sources of, 245–8</td>
<td>chronic fatigue syndrome and, 87</td>
</tr>
<tr>
<td>organ foci of autonomous clock gene expression, 246–8</td>
<td>defined, 86</td>
</tr>
<tr>
<td>pacemaker outputs, 243–5, 253</td>
<td>elevated levels of, 86</td>
</tr>
<tr>
<td>photic entrainment of pacemaker, 241–2</td>
<td>fibromyalgia and, 87</td>
</tr>
<tr>
<td>ubiquity of, 232–3</td>
<td>inflammatory, 86, 87–8</td>
</tr>
<tr>
<td>cognitive functioning, 136</td>
<td>measurement problems, 88</td>
</tr>
<tr>
<td>congestive heart failure, 103</td>
<td>oxidative stress and, 87</td>
</tr>
<tr>
<td>coronary artery disease study, 139</td>
<td>sleep regulation and, 86–7</td>
</tr>
<tr>
<td>corticosteroid-receptor complexes, 186–9</td>
<td>cortisol</td>
</tr>
<tr>
<td>corticosterone</td>
<td>actions of, 9</td>
</tr>
<tr>
<td>amygdala implants of, 196–7</td>
<td>elevated</td>
</tr>
<tr>
<td>amygdala infusion of, 181</td>
<td>depression and, 11, 116, 178, 206–7</td>
</tr>
<tr>
<td>CRH facilitation by, 195, 196</td>
<td>evening, 76</td>
</tr>
<tr>
<td>diet-administered: effects in chickens, 326</td>
<td>fat distribution and, 46</td>
</tr>
<tr>
<td>elevated</td>
<td>fearfulness in children and, 178</td>
</tr>
<tr>
<td>acetylcholine esterase production and, 180</td>
<td>incidence of, 47</td>
</tr>
<tr>
<td>foraging behavior and, 326, 328</td>
<td>long-term effects, 3</td>
</tr>
<tr>
<td>low testosterone and, 177</td>
<td>osteoporosis and, 116</td>
</tr>
<tr>
<td>metabolic rate and, 328</td>
<td>short-term effects, 3</td>
</tr>
<tr>
<td>oxygen consumption and, 328</td>
<td>glucocorticogenesis and, 327</td>
</tr>
<tr>
<td>parental behavior in birds and, 326</td>
<td>inadequate levels, 76</td>
</tr>
<tr>
<td>predator pressure and, 329</td>
<td>CRH (corticotropin-releasing hormone)</td>
</tr>
<tr>
<td>reproduction behavior suppression and, 326</td>
<td>anxious depression and, 9</td>
</tr>
<tr>
<td>territorial aggression reduction and, 325–6</td>
<td>behavioral effects in birds, 326</td>
</tr>
<tr>
<td>stress, body conditions, and, 334</td>
<td>behavioral inhibition in monkeys and, 178</td>
</tr>
<tr>
<td>corticosterone facilitation of, fear and, 192–3</td>
<td>central activation of, fear and, 192–3</td>
</tr>
<tr>
<td>diet-administered: effects in chickens, 326</td>
<td>corticosterone facilitation of, fear and, 195, 196</td>
</tr>
<tr>
<td>elevated</td>
<td>distribution in brain, 191</td>
</tr>
<tr>
<td>acetylcholine esterase production and, 180</td>
<td>feed-forward system involving, 152</td>
</tr>
<tr>
<td>foraging behavior and, 326, 328</td>
<td>functional associations, 190–1</td>
</tr>
<tr>
<td>low testosterone and, 177</td>
<td>increases in cerebrospinal fluid, 204</td>
</tr>
<tr>
<td>metabolic rate and, 328</td>
<td>infusions into stria terminalis, 193–4</td>
</tr>
<tr>
<td>oxygen consumption and, 328</td>
<td>response in sheep to threats, 201–2</td>
</tr>
<tr>
<td>parental behavior in birds and, 326</td>
<td>seizures from, 195–6, 197</td>
</tr>
<tr>
<td>predator pressure and, 329</td>
<td>staple response facilitation and, 192, 195</td>
</tr>
<tr>
<td>reproduction behavior suppression and, 326</td>
<td>CRH family receptors, 192</td>
</tr>
<tr>
<td>territorial aggression reduction and, 325–6</td>
<td>cytokines</td>
</tr>
<tr>
<td>anti-inflammatory, 86</td>
<td>autoimmune diseases and, 86</td>
</tr>
<tr>
<td>chronic fatigue syndrome and, 87</td>
<td>defined, 86</td>
</tr>
<tr>
<td>elevated levels of, 86</td>
<td>fibromyalgia and, 87</td>
</tr>
<tr>
<td>inflammatory, 86, 87–8</td>
<td>measurement problems, 88</td>
</tr>
<tr>
<td>measurement problems, 88</td>
<td>oxidative stress and, 87</td>
</tr>
<tr>
<td>oxidative stress and, 87</td>
<td>sleep regulation and, 86–7</td>
</tr>
</tbody>
</table>
dark-eyed juncos, 319, 327
'DASH' study, 55
daylight effects, 32
dendrite length changes, 202–3
depression
allostatic model and, 161
amygdala activity in, 204
anxious, 9–11
bone mineral density and, 10, 76
cortisol and, 11, 116, 178, 206–7
hypercortisolemia in, 204, 205
osteoporosis and, 116
pre-frontal cortex in, 171, 172, 204
shift worker, 273
DHEA, 82–3, 135–6
diabetes (type 2)
origins, 85
pathologies associated with, 44
‘thrifty genes’ and, 47–8
disease, income and education and, 228
distress, 107, 109
dopamine release, 38–40
drugs, neural effects of, 38–40
effector adaptation
circadian, 32–3
muscles, 32
effectors
compensatory activation of, 104
redundancy in, 101, 104
shared, 104, 105
efficiency of organisms, 26–8
EG, 317
egr-1 (early growth response gene 1), 184–6
elated-risk zone scoring, 115–20, 142–3
ELHS (emergency life history stages)
allostatic load reduction by, 318–21, 324
defined, 309
hormonal actions in relation to, 325
responses to
ACTH and
corticosterone treatment and, 327
energy requirements model
basic terms of, 316–7
endocrine/neuroendocrine bases of, 323–5
labile perturbation factors in, 317–21
reproductive life history stage in, 321–3
EO, 317–9
epinephrine
memory consolidation and, 178–9
release of, 84
Escheria coli, 134–5
exercise, mental benefits of, 57
fainting reactions, 103
fat
distribution of, 46
hunger for, hormones and, 20
fatty acid levels, family stress and, 20–1
fear
allostatic processes of
amygdala's role in, 174
prefrontal cortex in, 174–5
amygdala involvement in, 172, 173–4,
175–6
anxiety versus, 193, 206
brain circuits involved with, 172–3
brain lesions affecting, 173
brain systems and, 179–80
categorizing, 359
chronic, 359
defined, 167–8
extinction of learned, 181
general characteristics, 359
glucocorticoid secretion and, 176–7
in pathological anxiety, 168, 169
intracellular events and long-term memory
of, 183
learning/memory of
amygdala's role in, 176, 203
epinephrine/norepinephrine and, 178–9
ngfi-b (nerve growth factor induced
gene-B) involvement in, 188–9
signal transduction pathways for, 182–6
speed of, 167
neuroanatomical schematic of, 170
normal, 168
organs engaged in states of, 166
prefrontal cortex involvement, 171
response sustaining mechanisms, 176
sensitizing factors, 198
see also anxiety
feed-forward mechanisms, 8, 151–2
fibrinogen concentration, 46
fibromyalgia, 87
Fisher rats, 76
fluid volume
catecholamines and, 84
glucocorticoids and, 81
flynatchers, pied, 326, 329
food-entrainable oscillators, 248
forskolin treatment, 245–6
gastrointestinal disorders, 266–8
General Adaptation Syndrome, 90
genetic factors, 74, 75
GHT (geniculohypothalamic tract), 242
glucocorticoids
allostatic load and, 323–5
as Al. biomarkers, 135
cardiovascular function and, 81
Index

catecholamines and, 83–4, 327
central nervous system and, 81–2
chronic activation of, 177
chronic insufficiency of, 82
DHEA and, 82–3, 135–6
elevated levels of, 70, 72–3, 76
fear conditioning and, 180–1
fear feed-forward regulation by, 188, 189
fluid volume and, 81
functions of, 70, 81, 177
HPA activation restraint by, 194
immunity and, 81
inflammation and, 81
measurement problems, 88
memory and, 72, 179
metabolic effects, 81, 327
night restfulness and, 328
reproduction and, 82
secretion of
allostatic load and, 323–5
fear and, 176–7
HPA activation restraint by, 194
immunity and, 81
inflammation and, 81
measurement problems, 88
metabolic effects, 81, 327
night restfulness and, 328
reproduction and, 82

homeostatic systems principles, 102–4
homeostats defined, 101–3
resetting, 101
hormone secretions levels of, 313–5
roles of, 304
HPA (hypothalamic pituitary adrenal) axis, 9, 194, 205
hypercortisolemia, 204, 205
hyperglycemia, 51–2, 108
hypertension
allostatic view of, 41–4
current treatment recommendations, 55
fat consumption and, 20
homeostatic treatment model, 51, 52–4
incidence of, 40, 150
salt consumption and, 20
social conditions and, 19
hypervigilance. See vigilance
hypocretin, 253
hyposatisfaction
hypothalamus anterior, 252–3
lateral, 253
posterior, 253
hypothermia, 106–7
IGL (intergeniculate leaflet) projection, 242
iguanas, 334
IL-6 (interleukin-6), 131
illness incidence
features of stress and, 77–8
glucocorticoids and, 81
impaired of, 271–2
inflammation
catecholamines and, 84–5
effects of stress on, 77–8
insomnia, 276–7
insulin, 133
insulin resistance, 45–6, 133–4
internal milieu, 4–5, 68
intervention
demand distribution and responses, 52
higher-level, 57–8
low-level mechanism, problems with, 51–4
most successful, 55–6
kindling, 199–201
king penguins, 334
labile perturbation factors (LPF)
defined, 303
effects on allostatic load, 317–21
responses to
body condition and, 331–4
social status and, 330–1
types of, 309
lactation, calcium metabolism during, 352–4
leptin deficiency, 45, 85
Lewis rats, 76
life history stages (LHS)
concept, review of, 351–2
durations of, 307–8
examples of, 306, 307
hormone roles in, 304
human singularity of, 308–9
labile perturbations in, 317–21
levels of, 309–10
overlap of, 308
patterns of, 304–6
phases of, 306
reproductive, 321–3
substages of, 306
temporal sequence boundaries of, 307
see also ELHS (emergency life history stages)
lobotomy, 35, 36–7
LPF. See labile perturbation factors (LPF)
MacArthur Study of Successful Aging, 115
masking effects, 235
mediators
immediate positive effects of, 70, 72
inadequate responses of, 76
pathophysiology from, 75
patterns of release, 71, 73–6
protection versus damage from, 76
summarized, 74
systemic versus local, 73
melanopsin, 241
melatonin secretion, 243, 245
Melville, Herman, 50
memory
consolidation mechanisms, 179
CREB and, 184
‘flash-bulb,’ 72
mediators in formation of, 69
mental disorders
in shift workers, 272–4
pharmacotherapy for, 54, 56
see also depression
metabolic syndrome
allostatic view of, 46–8
defined, 44
low-level treatments for, 54
metabolism
catecholamines and, 85
glucocorticoids and, 81, 327
metabonomics, 137–8
methylphenidate, 56
metynapone
milieu intérieur, 99, 100
mortality
employment status and, 45
marital status and, 45
occupational, per time of day, 274, 275
social organization and, 39
social relationships disruption and, 228
motivation, 159, 324–5
natural killer cell activity, 272
negative feedback, 101
nervous system, evolution of, 5
nest-building, 4
ngfi-b (nerve growth factor induced gene-B)
NMN spectroscopy
basics of, 138
recursive partitioning of spectra, 140
terminal node spectra, 141
use in Al. assessments, 138–42
norepinephrine release, 84
NPY, 47
nutrient needs and replenishment, 33–4, 354
obesity
cultural disruption and, 48
homeostatic treatment model, 51, 54
incidence of, 44, 48
‘thrift genes’ and, 47–8
opiates, 159–61
orexin, 253
pain placebos, 57
Parkinson’s disease, 57
Per genes, 240–1, 245
petrels, 319, 321
pharmacotherapy, 54, 56
phosphate regulation, 6–7
physiological systems
capacities per loads on, 26–7
levels of functioning of, 310–3
physiology
brain control of, 19–21
defined, 344
kinds of change in, review of, 351–2
long-term needs versus short term demands, 357–8
‘stability’ in, 346
Pine Siskins, 328
PKA (protein kinase A), 183
shift workers (cont.)
  body temperature studies, 257–8
  circadian reentrainment incompleteness, 260
eating habits, 267–8
  EEG recordings of, 262–3
light exposure effects on, 260
primary complaints of, 261
salivary melatonin and cortisol level
  rhythms of, 259–60
sleep disturbances in, 261–4, 275–6
sleep length per sleep onset time, 261, 262
sleep timing, metabolic effects of, 268

shrikes, 329
side-blotched lizards, 326
skeletal muscle, 27–8
skin immunity, 77–8
sleep
  circadian-homeostatic influences on
  interactions between, 254–6
  separating, 250
cytokines and regulation of, 86–7
deprivation of, 76, 86, 249, 272
naps, 249, 263
NREM (non-rapid-eye-movement), 249–50
  parameters of, circadian variations in, 249–50
  pathways for circadian control of, 244
physiological/hormonal parameter profiles
during, 235–7
processes regulating, 248–9
REM, glucocorticosteroids and, 328
two-process regulation model, 250–1
see also insomnia; sleep-arousal

sleep-arousal
  adenosine's role in, 253–4, 255
  basal forebrain circuits involved in, 252–3
  lateral hypothalamus circuits involved in, 253
  posterior hypothalamus circuits involved in, 253
snow hunting, 316
snowshoe hares, 329–30
social phobics, 206
social relationships, 116–18
social status, 330–1
societies
  industrial, 49–50
  preindustrial, 48–9

sparrows
  Harris', 331
  song, 325, 326, 328
  white-crowned, 323, 326, 328
startle response
  bases for, 189, 193
  CRH facilitation of, 192, 195
  unconditioned, interference with, 193
  steroid functions, 7–8
stonechats, tropical, 329
stress
  behavioral responses to, 68
  defined, 67, 89–90
  homeostatic theory of, 104–7
  medical/psychological consequences, 108–9
  repeated, effects of, 75
  Selye theory of, 99–101, 107
  stressor-intensity/effector-system models, 100
stress responses, failure to turn off,
  75–6
stressors
  effects on ACTH/epinephrine/nonepinephrine, 102
  neuroendocrine responses and, 106
  stria terminalis, 193–4
stroke, social conditions and, 19
symmorphosis, 26–7
Syndrome X. See metabolic syndrome
  system challenges, adaptive responses to, 2
testosterone, corticosterone and, 177
therapeutic communities, 55–6
thermoregulation. See body temperature
TNF alpha levels, 87
ulcers, peptic, 267, 268
uncertainty states, 174
urocortins, 191
vigilance
  African-American, 43–4
  long-term effects of, 41–4
  VTA (ventral tegmental area), 38
waist-to-hip ratio, 134