AN INTRODUCTION TO INVARIANTS AND MODULI

Incorporated in this volume are the first two books in Mukai’s series on moduli theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat’s last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Among other things, this volume includes an improved presentation of the classical foundations of invariant theory that, in addition to geometers, will be useful to those studying representation theory. This translation gives an accurate account of Mukai’s influential Japanese texts.
Cambridge Studies in Advanced Mathematics

Editorial Board:

B. Bollobas, W. Fulton, A. Katok, F. Kirwin, P. Sarnak

Recently published

24 H. Kunita Stochastic flows and stochastic differential equations
25 P. Wojtaszczyk Banach spaces for analysts
26 J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in harmonic analysis
27 A. Frohlich & M.J. Taylor Algebraic number theory
28 K. Goebel & W.A. Kirk Topics in metric fixed point theory
29 J.F. Humphreys Reflection groups and Coxeter groups
30 D.J. Benson Representations and cohomology I
31 D.J. Benson Representations and cohomology II
32 C. Allday & V. Puppe Cohomological methods in transformation groups
33 C. Soulé et al. Lectures on Arakelov geometry
34 A. Ambrosetti & G. Prodi A primer of nonlinear analysis
35 J. Palis & F. Takens Hyperbolicity, stability and chaos at homoclinic bifurcations
36 Y. Meyer Wavelets and operators I
37 C. Weibel An introduction to homological algebra
38 W. Bruns & J. Herzog Cohen-Macaulay rings
39 V. Snaith Explicit Brauer induction
40 G. Laumon Cohomology of Drinfeld modular varieties I
41 E.B. Davies Spectral theory and differential operators
42 J. Diekel, H. Jarchow, & A. Tonge Absolutely summing operators
43 P. Mattila Geometry of sets and measures in Euclidean spaces
44 R. Pinsky Positive harmonic functions and diffusion
45 G. Tenenbaum Introduction to analytic and probabilistic number theory
46 C. Peskine An algebraic introduction to complex projective geometry
47 Y. Meyer & R. Coifman Wavelets
48 R. Stanley Enumerative combinatorics I
49 J. Porteous Clifford algebras and the classical groups
50 M. Audin Spinning tops
51 V. Jurdjevic Geometric control theory
52 H. Volklein Groups as Galois groups
53 J. Le Potier Lectures on vector bundles
54 D. Bump Automorphic forms and representations
55 G. Laumon Cohomology of Drinfeld modular varieties II
56 D.M. Clark & B.A. Davey Natural dualities for the working algebraist
57 J. McCleary A user’s guide to spectral sequences II
58 P. Taylor Practical foundations of mathematics
59 M.P. Brodmann & R.Y. Sharp Local cohomology
60 J.D. Dixon et al. Analytic pro-P groups
61 R. Stanley Enumerative combinatorics II
62 R.M. Dudley Uniform central limit theorems
63 J. Jost & X. Li-Jost Calculus of variations
64 A.J. Berrick & M.E. Keating An introduction to rings and modules
65 S. Morosawa Holomorphic dynamics
66 A.J. Berrick & M.E. Keating Categories and modules with K-theory in view
67 K. Sato Levy processes and infinitely divisible distributions
68 H. Hida Modular forms and Galois cohomology
69 R. Iorio & V. Iorio Fourier analysis and partial differential equations
70 R. Blei Analysis in integer and fractional dimensions
71 F. Borceaux & G. Janelidze Galois theories
72 B. Bollobas Random graphs

A full series list is available at www.cambridge.org
AN INTRODUCTION TO INVARIANTS AND MODULI

SHIGERU MUKAI

Translated by W. M. Oxbury
Contents

Preface xi
Acknowledgements xiii
Introduction xv

(a) What is a moduli space? xv
(b) Algebraic varieties and quotients of algebraic varieties xvi
(c) Moduli of bundles on a curve xix

1 **Invariants and moduli**

1.1 A parameter space for plane conics 1
1.2 Invariants of groups 9
 (a) Hilbert series 9
 (b) Molien’s formula 13
 (c) Polyhedral groups 15
1.3 Classical binary invariants 19
 (a) Resultants and discriminants 19
 (b) Binary quartics 26
1.4 Plane curves 32
 (a) Affine plane curves 32
 (b) Projective plane curves 35
1.5 Period parallelograms and cubic curves 41
 (a) Invariants of a lattice 41
 (b) The Weierstrass \wp function 44
 (c) The \wp function and cubic curves 47

2 **Rings and polynomials**

2.1 Hilbert’s Basis Theorem 51
2.2 Unique factorisation rings 55
2.3 Finitely generated rings 58
2.4 Valuation rings 61
(a) Power series rings 61
(b) Valuation rings 63

2.5 A diversion: rings of invariants which are not finitely generated 68
(a) Graded rings 69
(b) Nagata’s trick 70
(c) An application of Liouville’s Theorem 73

3 Algebraic varieties 77

3.1 Affine varieties 78
(a) Affine space 78
(b) The spectrum 81
(c) Some important notions 86
Morphisms 86
Products 87
General spectra and nilpotents 88
Dominant morphisms 89
Open immersions 90
Local properties 91

3.2 Algebraic varieties 91
(a) Gluing affine varieties 91
(b) Projective varieties 95

3.3 Functors and algebraic groups 98
(a) A variety as a functor from algebras to sets 98
(b) Algebraic groups 100

3.4 Completeness and toric varieties 103
(a) Complete varieties 103
(b) Toric varieties 107
(c) Approximation of valuations 111

4 Algebraic groups and rings of invariants 116

4.1 Representations of algebraic groups 117

4.2 Algebraic groups and their Lie spaces 122
(a) Local distributions 122
(b) The distribution algebra 124
(c) The Casimir operator 128

4.3 Hilbert’s Theorem 130
(a) Linear reductivity 130
(b) Finite generation 135

4.4 The Cayley-Sylvester Counting Theorem 137
(a) $SL(2)$ 137
(b) The dimension formula for $SL(2)$ 140
Contents vii

(c) A digression: Weyl measure 142
(d) The Cayley-Sylvester Formula 143
(e) Some computational examples 148

4.5 Geometric reductivity of SL(2) 152

5 The construction of quotient varieties 158

5.1 Affine quotients 159
(a) Separation of orbits 159
(b) Surjectivity of the affine quotient map 163
(c) Stability 165

5.2 Classical invariants and the moduli of smooth hypersurfaces in \mathbb{P}^n 167
(a) Classical invariants and discriminants 167
(b) Stability of smooth hypersurfaces 171
(c) A moduli space for hypersurfaces in \mathbb{P}^n 174
(d) Nullforms and the projective quotient map 175

6 The projective quotient 181

6.1 Extending the idea of a quotient: from values to ratios 182
(a) The projective spectrum 186
(b) The Proj quotient 189
(c) The Proj quotient by a $GL(n)$ action of ray type 195

6.2 Linearisation and Proj quotients 197

6.3 Moving quotients 201
(a) Flops 201
(b) Toric varieties as quotient varieties 205
(c) Moment maps 208

7 The numerical criterion and some applications 211

7.1 The numerical criterion 212
(a) 1-parameter subgroups 212
(b) The proof 213

7.2 Examples and applications 219
(a) Stability of projective hypersurfaces 219
(b) Cubic surfaces 224
(c) Finite point sets in projective space 230

8 Grassmannians and vector bundles 234

8.1 Grassmannians as quotient varieties 235
(a) Hilbert series 237
(b) Standard monomials and the ring of invariants 239
(c) Young tableaux and the Plücker relations 241
(d) Grassmannians as projective varieties 245
(e) A digression: the degree of the Grassmannian 247
Contents

8.2 Modules over a ring 251
 (a) Localisation 251
 (b) Local versus global 254
 (c) Free modules 257
 (d) Tensor products and flat modules 259

8.3 Locally free modules and flatness 262
 (a) Locally free modules 262
 (b) Exact sequences and flatness 264

8.4 The Picard group 268
 (a) Algebraic number fields 268
 (b) Two quadratic examples 271

8.5 Vector bundles 276
 (a) Elementary sheaves of modules 277
 (b) Line bundles and vector bundles 279
 (c) The Grassmann functor 282
 (d) The tangent space of the functor 284

9 Curves and their Jacobians 287

9.1 Riemann’s inequality for an algebraic curve 288
 (a) Prologue: gap values and the genus 290
 (b) Divisors and the genus 292
 (c) Divisor classes and vanishing index of speciality 294

9.2 Cohomology spaces and the genus 297
 (a) Cousin’s problem 297
 (b) Finiteness of the genus 301
 (c) Line bundles and their cohomology 304
 (d) Generation by global sections 307

9.3 Nonsingularity of quotient spaces 309
 (a) Differentials and differential modules 309
 (b) Nonsingularity 311
 (c) Free closed orbits 313

9.4 An algebraic variety with the Picard group as its set of points 316
 (a) Some preliminaries 316
 (b) The construction 319
 (c) Tangent spaces and smoothness 323

9.5 Duality 327
 (a) Dualising line bundles 327
 (b) The canonical line bundle 330
 (c) De Rham cohomology 332
Contents

9.6 The Jacobian as a complex manifold 334
 (a) Compact Riemann surfaces 335
 (b) The comparison theorem and the Jacobian 337
 (c) Abel’s Theorem 342

10 Stable vector bundles on curves 348

10.1 Some general theory 349
 (a) Subbundles and quotient bundles 350
 (b) The Riemann-Roch formula 352
 (c) Indecomposable bundles and stable bundles 355
 (d) Grothendieck’s Theorem 359
 (e) Extensions of vector bundles 361

10.2 Rank 2 vector bundles 365
 (a) Maximal line subbundles 365
 (b) Nonstable vector bundles 366
 (c) Vector bundles on an elliptic curve 369

10.3 Stable bundles and Pfaffian semiinvariants 371
 (a) Skew-symmetric matrices and Pfaffians 371
 Even skew-symmetric matrices 372
 Odd skew-symmetric matrices 374
 Skew-symmetric matrices of rank 2 375
 (b) Gieseker points 376
 (c) Semistability of Gieseker points 379

10.4 An algebraic variety with $SU_C(2, L)$ as its set of points 386
 (a) Tangent vectors and smoothness 387
 (b) Proof of Theorem 10.1 391
 (c) Remarks on higher rank vector bundles 394

11 Moduli functors 398

11.1 The Picard functor 400
 (a) Fine moduli and coarse moduli 400
 (b) Cohomology modules and direct images 403
 (c) Families of line bundles and the Picard functor 407
 (d) Poincaré line bundles 410

11.2 The moduli functor for vector bundles 413
 (a) Rank 2 vector bundles of odd degree 416
 (b) Irreducibility and rationality 418
 (c) Rank 2 vector bundles of even degree 419

11.3 Examples 422
 (a) The Jacobian of a plane quartic 422
 (b) The affine Jacobian of a spectral curve 424
12 Intersection numbers and the Verlinde formula

12.1 Sums of inverse powers of trigonometric functions
- Sine sums
- Variations
- Tangent numbers and secant numbers

12.2 Riemann-Roch theorems
- Some preliminaries
- Hirzebruch-Riemann-Roch
- Grothendieck-Riemann-Roch for curves
- Riemann-Roch with involution

12.3 The standard line bundle and the Mumford relations
- The standard line bundle
- The Newstead classes
- The Mumford relations

12.4 From the Mumford relations to the Verlinde formula
- Warming up: secant rings
- The proof of formulae (12.2) and (12.4)

12.5 An excursion: the Verlinde formula for quasiparabolic bundles
- Quasiparabolic vector bundles
- A proof of (12.6) using Riemann-Roch and the Mumford relations
- Birational geometry
Preface

The aim of this book is to provide a concise introduction to algebraic geometry and to algebraic moduli theory. In so doing, I have tried to explain some of the fundamental contributions of Cayley, Hilbert, Nagata, Grothendieck and Mumford, as well as some important recent developments in moduli theory, keeping the proofs as elementary as possible. For this purpose we work throughout in the category of algebraic varieties and elementary sheaves (which are simply order-reversing maps) instead of schemes and sheaves (which are functors). Instead of taking GIT (Geometric Invariant Theory) quotients of projective varieties by $PGL(N)$, we take, by way of a shortcut, Proj quotients of affine algebraic varieties by the general linear group $GL(N)$. In constructing the moduli of vector bundles on an algebraic curve, Grothendieck’s Quot scheme is replaced by a certain explicit affine variety consisting of matrices with polynomial entries. In this book we do not treat the very important analytic viewpoint represented by the Kodaira-Spencer and Hodge theories, although it is treated, for example, in Ueno [113], which was in fact a companion volume to this book when published in Japanese.

The plan of the first half of this book (Chapters 1–5 and 7) originated from notes taken by T. Hayakawa in a graduate lecture course given by the author in Nagoya University in 1985, which in turn were based on the works of Hilbert [20] and Mumford et al. [30]. Some additions and modifications have been made to those lectures, as follows.

1. I have included chapters on ring theory and algebraic varieties accessible also to undergraduate students. A strong motivation for doing this, in fact, was the desire to collect in one place the early series of fundamental results of Hilbert that includes the Basis Theorem and the Nullstellensatz.

2. For the proof of linear reductivity (or complete reductivity), Cayley’s Ω-process used by Hilbert is quite concrete and requires little background
knowledge. However, in view of the importance of algebraic group representations I have used instead a proof using Casimir operators. The key to the proof is an invariant bilinear form on the Lie space. The uniqueness property used in the Japanese edition was replaced by the positive definiteness in this edition.

(3) I have included the Cayley-Sylvester formula in order to compute explicitly the Hilbert series of the classical binary invariant ring since I believe both tradition and computation are important. I should add that this and Section 4.5 are directly influenced by Springer [8].

Both (2) and (3) took shape in a lecture course given by the author at Warwick University in the winter of 1998.

(4) I have included the result of Nagata [11], [12] that, even for an algebraic group acting on a polynomial ring, the ring of invariants need not be finitely generated.

(5) Chapter 1 contains various introductory topics adapted from lectures given in the spring of 1998 at Nagoya and Kobe Universities.

The second half of the book was newly written in 1998–2000 with two main purposes: first, an elementary invariant-theoretic construction of moduli spaces including Jacobians and, second, a self-contained proof of the Verlinde formula for $SL(2)$. For the first I make use of Gieseker matrices. Originally this idea was invented by Gieseker [72] to measure the stability of the action of $PGL(N)$ on the Quot scheme. But in this book moduli spaces of bundles are constructed by taking quotients of a variety of Gieseker matrices themselves by the general linear group. This construction turns out to be useful even in the case of Jacobians. For the Verlinde formula, I have chosen Zagier’s proof [115] among three known algebraic geometric proofs. However, Thaddeus’s proof [112] uses some interesting birational geometry, and I give a very brief explanation of this for the case of rank 2 parabolic bundles on a pointed projective line.
Acknowledgements

This book is a translation of *Moduli Theory I, II* published in 1998 and 2000 in Japanese. My warmest gratitude goes to the editorial board of Iwanami Publishers, who read my Japanese very carefully and made several useful comments, and to Bill Oxbury, who was not only the translator but also a very kind referee. He corrected many misprints and made many useful suggestions, and following these I was able to improve the presentation of the material and to make several proofs more complete.

I am also very grateful to K. Nishiyama, K. Fujiwara, K. Yanagawa and H. Nasu, from whom I also received useful comments on the Japanese edition, and to H. Saito for many discussions.

Finally, I would like to thank on this occasion the Graduate School of Mathematics (including its predecessor, the Department of Mathematics in the Faculty of Sciences) of Nagoya University, where I worked for 23 years from my first position and was able to complete the writing of this book.

Partial financial support was made by Grant-in-Aid for Scientific Research (B)(2)0854004 of the Japanese Ministry of Education and the JSPS’s (A)(2)10304001.

Shigeru Mukai
Kyoto, June 2002
Introduction

(a) What is a moduli space?

A moduli space is a manifold, or variety, which parametrises some class of geometric objects. The j-invariant classifying elliptic curves up to isomorphism and the Jacobian variety of an algebraic curve are typical examples. In a broader sense, one could include as another classical example the classifying space of a Lie group. In modern mathematics the idea of moduli is in a state of continual evolution and has an ever-widening sphere of influence. For example:

- By defining a suitable height function on the moduli space of principally polarised abelian varieties it was possible to resolve the Shafarevich conjectures on the finiteness of abelian varieties (Faltings 1983).
- The moduli space of Mazur classes of 2-dimensional representations of an absolute Galois group is the spectrum of a Hecke algebra.

The application of these results to resolve such number-theoretic questions as Mordell’s Conjecture and Fermat’s Last Theorem are memorable achievements of recent years. Turning to geometry:

- Via Donaldson invariants, defined as the intersection numbers in the moduli space of instanton connections, one can show that there exist homeomorphic smooth 4-manifolds that are not diffeomorphic.

Indeed, Donaldson’s work became a prototype for subsequent research in this area.

Here’s an analogy. When natural light passes through a prism it separates into various colours. In a similar way, one can try to elucidate the hidden properties of an algebraic variety. One can think of the moduli spaces naturally associated to the variety (the Jacobian of a complex curve, the space of instantons on a complex surface) as playing just such a role of ‘nature’s hidden colours’.
The aim of this book is to explain, with the help of some concrete examples, the basic ideas of moduli theory as they have developed alongside algebraic geometry – in fact, from long before the modern viewpoint sketched above. In particular, I want to give a succinct introduction to the widely applicable methods for constructing moduli spaces known as geometric invariant theory.

If a moduli problem can be expressed in terms of algebraic geometry then in many cases it can be reduced to the problem of constructing a quotient of a suitable algebraic variety by an action of a group such as the general linear group $GL(m)$. From the viewpoint of moduli theory this variety will typically be a Hilbert scheme parametrising subschemes of a variety or a Quot scheme parametrising coherent sheaves. From a group-theoretic point of view it may be a finite-dimensional linear representation regarded as an affine variety or a subvariety of such. To decide what a solution to the quotient problem should mean, however, forces one to rethink some rather basic questions: What is an algebraic variety? What does it mean to take a quotient of a variety? In this sense the quotient problem, present from the birth and throughout the development of algebraic geometry, is even today sadly lacking an ideal formulation. And as one sees in the above examples, the ‘moduli problem’ is not determined in itself but depends on the methods and goals of the mathematical area in which it arises. In some cases elementary considerations are sufficient to address the problem, while in others much more care is required. Maybe one cannot do without a projective variety as quotient; maybe a stack or algebraic space is enough. In this book we will construct moduli spaces as projective algebraic varieties.

(b) Algebraic varieties and quotients of algebraic varieties

An algebraic curve is a rather sophisticated geometric object which, viewed on the one hand as a Riemann surface, or on the other as an algebraic function field in one variable, combines analysis and algebra. The theory of meromorphic
functions and abelian differentials on compact Riemann surfaces, developed by Abel, Riemann and others in the nineteenth century, was, through the efforts of many later mathematicians, deepened and sublimated to an ‘algebraic function theory’. The higher dimensional development of this theory has exerted a profound influence on the mathematics of the twentieth century. It goes by the general name of ‘the study of algebraic varieties’. The data of an algebraic variety incorporate in a natural way that of real differentiable manifolds, of complex manifolds, or again of an algebraic function field in several variables. (A field K is called an algebraic function field in n variables over a base field k if it is a finitely generated extension of k of transcendence degree n.) Indeed, any algebraic variety may be defined by patching together (the spectra of) some finitely generated subrings R_1, \ldots, R_N of a function field K. This will be explained in Chapter 3.

This ring-theoretic approach, from the viewpoint of varieties as given by systems of algebraic equations, is very natural; however, the moduli problem, that is, the problem of constructing quotients of varieties by group actions, becomes rather hard. When an algebraic group G acts on an affine variety, how does one construct a quotient variety? (An algebraic group is an algebraic variety with a group structure, just as a Lie group is a smooth manifold which has a compatible group structure.) It turns out that the usual quotient topology, and the differentiable structure on the quotient space of a Lie group by a Lie subgroup, fail to work well in this setting. Clearly they are not sufficient if they fail to capture the function field, together with its appropriate class of subrings, of the desired quotient variety. The correct candidates for these are surprisingly simple, namely, the subfield of G-invariants in the original function field K, and the subrings of G-invariants in the integral domains $R \subset K$ (see Chapter 5). However, in proceeding one is hindered by the following questions.

1. Is the subring of invariants R^G of a finitely generated ring R again finitely generated?
2. Is the subfield of invariants $K^G \subset K$ equal to the field of fractions of R^G?
3. Is $K^G \subset K$ even an algebraic function field? – that is, is K^G finitely generated over the base field k?
4. Even if the previous questions can be answered positively and an algebraic variety constructed accordingly, does it follow that the points of this variety can be identified with the G-orbits of the original space?

In fact one can prove property (3) quite easily; the others, however, are not true in general. We shall see in Section 2.5 that there exist counterexamples to (1)
Introduction

even in the case of an algebraic group acting linearly on a polynomial ring. Question (2) will be discussed in Chapter 6.

So how should one approach this subject? Our aim in this book is to give a concrete construction of some basic moduli spaces as quotients of group actions, and in fact we will restrict ourselves exclusively to the general linear group $GL(m)$. For this case property (1) does indeed hold (Chapter 4), and also property (4) if we modify the question slightly. (See the introduction to Chapter 5.) A correspondence between G-orbits and points of the quotient is achieved provided we restrict, in the original variety, to the open set of stable points for the group action. Both of these facts depend on a representation-theoretic property of $GL(m)$ called linear reductivity.

After paving the way in Chapter 5 with the introduction of affine quotient varieties, we ‘globalise’ the construction in Chapter 6. Conceptually, this may be less transparent than the affine construction, but essentially it just replaces the affine spectrum of the invariant ring with the projective spectrum (Proj) of the semiinvariant ring. This ‘global’ quotient, which is a projective variety, we refer to as the Proj quotient, rather than ‘projective quotient’, in order to distinguish it from other constructions of the projective quotient variety that exist in the literature.

An excellent example of a Proj quotient (and indeed of a moduli space) is the Grassmannian. In fact, the Grassmannian is seldom considered in the context of moduli theory, and we discuss it here in Chapter 8. This variety is usually built by gluing together affine spaces, but here we construct it globally as the projective spectrum of a semiinvariant ring and observe that this is equivalent to the usual construction. For the Grassmannian $G(2, n)$ we compute the Hilbert series of the homogeneous coordinate ring. We use this to show that it is generated by the Plücker coordinates, and that the relations among these are generated by the Plücker relations.

In general, for a given moduli problem, one can only give an honest construction of a moduli space if one is able to determine explicitly the stable points of the group action. This requirement of the theory is met in Chapter 7 with the numerical criterion for stability and semistability of Hilbert and Mumford, which we apply to some geometrical examples from Chapter 5. Later in the book we construct moduli spaces for line bundles and vector bundles on an algebraic curve, which requires the notion of stability of a vector bundle. Historically, this was discovered by Mumford as an application of the numerical criterion, but in this book we do not make use of this, as we are able to work directly with the semiinvariants of our group actions. Another important application, which we do not touch on here, is to the construction of a compactification of the moduli space of curves as a projective variety.
(c) Moduli of bundles on a curve

In Chapter 9 algebraic curves make their entry. We first explain:

1. what is the genus of a curve?
2. Riemann’s inequality and the vanishing of cohomology (or index of speciality); and
3. the duality theorem.

In the second half of Chapter 9 we construct, as the projective spectrum of the seminvariant ring of a suitable group action on an affine variety, an algebraic variety whose underlying set of points is the Picard group of a given curve, and we show that over the complex numbers this is nothing other than the classical Jacobian.

In Chapter 10 we extend some essential parts of the line bundle theory of the preceding chapter to higher rank vector bundles on a curve, and we then construct the moduli space of rank 2 vector bundles. This resembles the line bundle case, but with the difference that the notion of stability arises in a natural way. The moduli space of vector bundles, in fact, can be viewed as a Grassmannian over the function field of the curve, and one can roughly paraphrase Chapter 10 by saying that a moduli space is constructed as a projective variety by explicitly defining the Plücker coordinates of a semistable vector bundle. (See also Seshadri [77].) One advantage of this construction – although it has not been possible to say much about this in this book – is the consequence that, if the curve is defined over a field \(k \), then the same is true, a priori, of the moduli space.

In Chapter 11 the results of Chapters 9 and 10 are reconsidered, in the following sense. Algebraic varieties have been found whose sets of points can be identified with the sets of equivalence classes of line bundles, or vector bundles, on the curve. However, to conclude that ‘these varieties are the moduli spaces for line bundles, or vector bundles’ is not a very rigorous statement. More mathematical would be, first, to give some clean definition of ‘moduli’ and ‘moduli space’, and then to prove that the varieties we have obtained are moduli spaces in the sense of this definition. One answer to this problem is furnished by the notions of representability of a functor and of coarse moduli. These are explained in Chapter 11, and the quotient varieties previously constructed are shown to be moduli spaces in this sense. Again, this point of view becomes especially important when one is interested in the field over which the moduli space is defined. This is not a topic which it has been possible to treat in this book, although we do give one concrete example at the end of the chapter, namely, the Jacobian of an elliptic curve.
In the final chapter we give a treatment of the Verlinde formulae for rank 2 vector bundles. Originally, these arose as a general-dimension formula for objects that are somewhat unfamiliar in geometry, the spaces of conformal blocks from 2-dimensional quantum field theory. (See Ueno [113].) In our context, however, they appear as elegant and precise formulae for the Hilbert polynomials for the semiinvariant rings used to construct the moduli of vector bundles. Various proofs are known, but the one presented here (for odd degree bundles) is that of Zagier [115], making use of the formulae for the intersection numbers in the moduli space of Thaddeus [111]. On the way, we observe a curious formal similarity between the cohomology ring of the moduli space and that of the Grassmannian $G(2, n)$.

Convention: Although it will often be unnecessary, we shall assume throughout the book that the field k is algebraically closed and of characteristic zero.