Contents

Preface .. xi
List of Acronyms xv

1 Introduction .. 1
 1.1 The Ramjet and the Supersonic Combustion Ramjet
 (Scramjet) Engine Cycle 1
 1.2 Historical Overview 4
 1.3 Summary 12
 References .. 14

2 Theoretical Background 16
 2.1 Field Equations and Constitutive Relations for
 Compressible Flows 16
 2.1.1 Field Equations of Fluid Motion 16
 2.1.1.1 Mass Conservation 17
 2.1.1.2 Momentum Conservation Equations ... 17
 2.1.1.3 Conservation of Energy 18
 2.1.1.4 Conservation of Species 18
 2.1.2 Constitutive Equations 18
 2.1.2.1 Equations of State 19
 2.1.2.2 The Fourier Law for Heat Transfer ... 19
 2.1.2.3 The Shear-Stress Tensor 19
 2.2 One-Dimensional Steady Flow and the Rankine–Hugoniot
 Relations 20
 2.2.1 One-Dimensional Steady Flow 20
 2.2.2 The Rankine–Hugoniot Relations 22
 2.2.3 Reservoir Conditions and Thermal Choking in
 Constant-Area Ducts 23
2.3 Chemical Reactions and Equilibrium
 2.3.1 Thermodynamic Relations and the Gibbs Function
 2.3.2 Chemical Equilibrium
 2.3.3 The Law of Mass Action and Reaction-Rate Constants
 2.3.4 Air Equilibrium Composition
2.4 Nonequilibrium Considerations

3 High-Temperature Gas Dynamics and Hypersonic Effects
 3.1 Introduction
 3.2 Real-Gas Equation of State
 3.3 Elements of Kinetic Theory
 3.3.1 Pressure, Energy, and the Equation of State
 3.3.2 Mean Free Path
 3.3.3 Maxwellian Distribution – Velocity Distribution Function
 3.3.4 Transport Coefficients
 3.4 Elements of Statistical Thermodynamics
 3.4.1 Microscopic Description of Gases
 3.4.1.1 Modes of Energy
 3.4.1.2 Quantum Energy Levels and Degeneracies
 3.4.1.3 Enumeration of Microstates and the Macrostate
 3.4.2 Counting the Number of Microstates for a Given Macrostate
 3.4.3 The Most Probable State
 3.4.4 The Boltzmann Distribution
 3.4.5 Thermodynamic Properties in Terms of the Partition Function
 3.4.6 Evaluation of the Partition Function
 3.4.7 Evaluation of Thermodynamic Properties
 3.5 Hypersonic Flow

4 Cycle Analyses and Energy Management
 4.1 Introduction
 4.2 Ideal Scramjet Cycle
 4.3 Trajectory and Loads
 4.4 Performance Analysis
 4.5 Combined Cycles
 4.5.1 The Turbine-Based Combined Cycle – TBCC

References
Contents

4.5.2 The Rocket-Based Combined Cycle – RBCC 75
4.5.2.1 RBCC Systems’ Mode of Operation 76
4.5.2.2 Combined-Cycle Propulsion Technical Issues 78
4.5.2.3 Mode-Specific RBCC Technical Issues 79

References 82

5 **Inlets and Nozzles** .. 87
5.1 Inlets 87
5.1.1 Introduction 87
5.1.2 Compression Process Efficiency and Energetic Balance 90
5.1.2.1 Pressure Recovery and Kinetic Energy Efficiency 90
5.1.2.2 The Pressure Coefficient K_{WP} 93
5.1.2.3 Inlet Performance – Compression and Contraction Ratio Effects 95
5.1.3 Flow Interactions and Inlet Design Considerations 98
5.1.3.1 Inlet Starting 98
5.1.3.2 Viscous Interactions 100
5.1.3.3 Shock–Boundary-Layer Interactions 103
5.1.4 Advanced Concepts for Inlet-Flow Control 106
5.1.4.1 Intake Air Energy Management 106
5.1.4.2 Flow Deceleration Using a Magnetic Field 107
5.1.4.3 Flow Control Using Fuel Injection 114
5.1.5 Summary 121
5.2 Nozzles 122

References 124

6 **Supersonic Combustion Processes** 127
6.1 Introduction 127
6.2 Time Scales 128
6.3 Fuel–Air Mixing 130
6.3.1 Parallel, Unbounded, Compressible Flows 131
6.3.1.1 The Definition of the Convective Mach Number 133
6.3.1.2 Two-Dimensional Shear-Layer Growth – Velocity and Density Dependence 135
6.3.1.3 Compressibility Effects on Shear-Layer Growth 136
6.3.1.4 Effects of Heat Release on the Shear Layer 137
6.3.1.5 Mixing Within the Shear Layer 138
6.3.2 Mixing of Angled or Transverse Flows 139
6.3.3 Degree of Mixing and Mixing Efficiency 148
6.3.4 Mixing Enhancement 151
6.4 Chemical Kinetics – Reaction Mechanisms 157
 6.4.1 Hydrogen–Air Reaction Mechanisms 158
 6.4.1.1 Reduced Mechanisms for Hydrogen–Air Combustion 163
 6.4.2 Reaction Mechanisms for Hydrocarbons 165
 6.4.3 Summary 170
6.5 Flame Stability 171
 6.5.1 Recirculation-Region Flow Field 172
 6.5.2 Recirculation-Region Temperature 174
 6.5.3 Local Equivalence Ratio Analysis 176
 6.5.4 Recirculation-Region Composition Analysis 177
 6.5.5 Stability Parameter Formulations 179
 6.5.6 Summary 182
6.6 Combustion Chamber Design and Heat-Release Efficiency 182
 6.6.1 Isolator 183
 6.6.2 Combustion Chamber Design and Performance 187
 6.6.2.1 General Chamber Design Parameters 187
 6.6.2.2 Pressure Rise and Combustion Efficiency 189
6.7 Scaling Factors 198
6.8 Fuel Management 201
 6.8.1 Fuels as Vehicle and Engine Component Coolant Agents 201
 6.8.2 Thermal versus Catalytic Decomposition 204
 6.8.3 Fuel Management 206
References 207

7 Testing Methods and Wind Tunnels 215
 7.1 Introduction 215
 7.2 Hypersonic Flight Domain 215
 7.3 Blowdown Facilities 217
 7.3.1 Combustion-Heated Wind Tunnels 217
 7.3.2 Electrically Heated Wind Tunnels 219
 7.3.3 Arc-Heated Facilities 221
 7.4 Short-Duration, Pulsed-Flow Wind Tunnels 222
 7.4.1 Shock Tunnels 222
 7.4.2 Free-Piston Shock Tubes 224
 7.4.3 Expansion Tubes 225
 7.5 Summary 227
References 227
Contents

8 **Computational Fluid Dynamic Methods and Solutions for High-Speed Reacting Flows** ... 229

8.1 Introduction 229

8.2 Conservation Equations and Flow Physics Captured in These Equations 230

8.2.1 Field and Constitutive Equations 230

8.2.2 Molecular Transport of Species and Heat 231

8.3 Turbulent Reacting Flow – Length Scales 234

8.4 Computational Approaches for Turbulent, Chemically Reacting Flows 236

8.4.1 Direct Numerical Simulation 237

8.4.2 Reynolds-Averaged Navier–Stokes Simulation 238

8.4.3 Turbulence Models 239

8.4.4 Large-Eddy Simulation (LES) 240

8.5 Scramjet-Flow Computational Results 241

8.5.1 Steady-State Nonreacting Flows 242

8.5.2 Chemically Reacting Flows 244

8.6 Summary 248

References 249

Index 251