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1 INTRODUCTION

One thing I have learned in a long life: that all our science, measured against

reality, is primitive and childlike – and yet it is the most precious thing we have.

Albert Einstein

What we need is not the will to believe but the will to find out.

Bertrand Russell

Those who know how to think need no teachers.

Mahatma Gandhi

1.1 Continuum Mechanics

Matter is composed of discrete molecules, which in turn are made up of atoms. An

atom consists of electrons, positively charged protons, and neutrons. Electrons

form chemical bonds. An example of mechanical (that is, has no living cells)

matter is a carbon nanotube (CNT), which consists of carbon molecules in a

certain geometric pattern in equilibrium with each other, as shown in Fig. 1.1.

Another example of matter is a biological cell, which is a fundamental unit

of any living organism. There are two types of cells: prokaryotic and eukaryotic

cells. Eukaryotic cells are generally found in multicellular organs and they have

a true nucleus, distinct from a prokaryotic cell. Structurally, cells are composed

of a large number of macromolecules (or large molecules). These macromolecules

consist of large numbers of atoms and form specific structures, like chromosome

and plasma membranes in a cell. Macromolecules occur under four major types:

carbohydrates, proteins, lipids, and nucleic acids. To highlight the hierarchical

nature of the structures formed by the macromolecule in a cell, let us analyze a

chromosome.

Chromosomes, which are carriers of hereditary traits in an individual, are

found inside the nucleus of all eukaryotes. Each chromosome consists of a single

nucleic acid macromolecule called deoxyribonucleic acid (DNA) (2.2–2.4 nanome-

ters wide). These nucleic acids are in turn formed from the specific arrangement

of monomers called mono-nucleotides (0.3–0.33 nanometers). The fundamental

units of nucleotides are formed again by a combination of a specific arrangement

of a phosphate radical, nitrogenous base, and a carbohydrate sugar. The hier-

archical nature of the chromosome is as shown in Fig. 1.2(a). Similarly to the

chromosomes, all the structures in a cell are formed from a combination of the

macromolecules.
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Fig. 1.1 Carbon nanotubes (CNTs) with different chiralities

At the macroscopic scale, eukaryotic cells can be divided into three distinct

regions: nucleus, plasma membrane, and cytoplasm having a host of other struc-

tures, as shown in Fig. 1.2(b). The nucleus consists of chromosomes and other

protein structures and is the control center of the cell determining how the cell

functions. The plasma membrane encloses the cell and separates the material

outside the cell from inside. It is responsible for maintaining the integrity of the

cell and also acts as channels for the transport of molecules to and from the cell.

Cell membrane is made up of a double layer of phospholipid molecules (macro-

molecule), having embedded transmembrane proteins. The region between the

cell membrane and the nucleus is the cytoplasm which consists of a gel-like

fluid called cytosol, the cytoskeleton, and other macromolecules. Cytoskeleton

forms the biomechanical framework of the cell and consists of three primary

protein macromolecule structures of actin filaments, intermediate filaments, and

microtubules. Cell growth, expansion, and replication are all carried out in the

cytoplasm.

The interactions between the different components of the cell are responsible

for maintaining the structural integrity of the cell. The analysis of these interac-

tions to obtain the response of the cell when subjected to an external stimulus

(mechanical, electrical, chemical) is studied systematically under cell mechan-

ics. The structural framework of primary macromolecular structures in a cell is

shown in Fig. 1.2(c).
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Fig. 1.2 (a) Hierarchical nature of chromosome (b) Structure of a generalized cell
(c) Macromolecular structure in a cell
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4 INTRODUCTION

The study of matter at molecular or atomistic levels is very useful for under-

standing a variety of phenomena; but studies at these scales are not useful to

solve common engineering problems. The understanding gained at the molecular

level needs to be taken to the macrosopic scale (that is, scale that a human eye

can see) to be able to study its behavior. Central to this study is the assump-

tion that the discrete nature of matter can be overlooked, provided the length

scales of interest are large compared to the length scales of a discrete molecu-

lar structure. Thus, matter at sufficiently large length scales can be treated as

a continuum in which all physical quantities of interest, including density, are

continuously differentiable.

The subject of mechanics deals with the study of motion and forces in solids,

liquids, and gases and the deformation or flow of these materials. In such a

study, we make the simplifying assumption, for analysis purposes, that the matter

is distributed continuously, without gaps or empty spaces (i.e., we disregard

the molecular structure of matter). Such a hypothetical continuous matter is

termed a continuum. In essence, in a continuum all quantities such as the density,

displacements, velocities, stresses, and so on vary continuously so that their

spatial derivatives exist and are continuous. The continuum assumption allows

us to shrink an arbitrary volume of material to a point, in much the same way

as we take the limit in defining a derivative, so that we can define quantities of

interest at a point. For example, density (mass per unit volume) of a material at

a point is defined as the ratio of the mass ∆m of the material to a small volume

∆V surrounding the point in the limit that ∆V becomes a value ǫ3, where ǫ is

small compared with the mean distance between molecules:

ρ = lim
∆V →ǫ3

∆m

∆V
. (1.1.1)

In fact, we take the limit ǫ → 0. A mathematical study of mechanics of such an

idealized continuum is called continuum mechanics.

Engineers and scientists undertake the study of continuous systems to un-

derstand their behavior under “working conditions,” so that the systems can

be designed to function properly and produced economically. For example, if we

were to repair or replace a damaged artery in a human body, we must understand

the function of the original artery and the conditions that led to its damage. An

artery carries blood from the heart to different parts of the body. Conditions like

high blood pressure and increase in cholesterol content in the blood may lead

to deposition of particles in the arterial wall, as shown in Fig. 1.3. With time,

accumulation of these particles in the arterial wall hardens and constricts the

passage, leading to cardiovascular diseases. A possible remedy for such diseases

is to repair or replace the damaged portion of the artery. This in turn requires an

understanding of the deformation and stresses caused in the arterial wall by the

flow of blood. The understanding is then used to design the vascular prosthesis

(that is, artificial artery).
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Fig. 1.3 Progressive damage of (plaque formation in) artery due to deposition of particles
in the arterial wall

The primary objectives of this book are: (1) to study the conservation and

balance principles in mechanics of continua and formulate the equations that

describe the motion and mechanical behavior of materials; and (2) to present

the applications of these equations to simple problems associated with flows of

fluids, conduction of heat, and deformation of solid bodies. While the first of these

objectives is an important topic, the reason for the formulation of the equations

is to gain a quantitative understanding of the behavior of an engineering system.

This quantitative understanding is useful in the design and manufacture of better

products.

1.2 Examples of Engineering Systems

Typical examples of engineering problems, which are sufficiently simple to cover

in this course, are described below. At this stage of discussion, it is sufficient to

rely on the reader’s intuitive understanding of concepts.

Example 1.2.1

(A mechanical structure) We wish to design a diving board which must enable the
swimmer to gain enough momentum for the swimming exercise. The diving board is
fixed at one end and free at the other end (see Fig. 1.4). The board is initially straight
and horizontal, and of length L and uniform cross-section A = bh.

The design process consists of selecting the material with Young’s modulus E and
cross-sectional dimensions b and h such that the board carries the weight W of the
swimmer. The design criteria are that the stresses developed do not exceed the allowable
stress and the deflection of the free end does not exceed a pre-specified value δ. A
preliminary design of such systems is often based on mechanics of materials equations.
The final design involves the use of more sophisticated equations, such as the three-
dimensional elasticity equations. The equations of elementary beam theory may be
used to find a relation between the deflection δ of the free end in terms of the length
L, cross-sectional dimensions b and h, Young’s modulus E, and weight W :
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δ =
4WL3

Ebh3
. (1.2.1)

Given δ (allowable deflection) and load W (maximum possible weight of a swimmer),
one can select the material (Young’s modulus, E) and dimensions L, b, and h (which
must be restricted to the standard sizes fabricated by a manufacturer). In addition to
the deflection criterion, one must also check if the board develops stresses that exceed
the allowable stresses of the material selected. Analysis of pertinent equations provides
the designer with alternatives to select the material and dimensions of the board so as
to have a cost-effective but functionally reliable structure.

h

b

L

Fig. 1.4 A diving board fixed at left end and free at right end

Example 1.2.2

(Fluid flow) We wish to measure the viscosity µ of a lubricating oil used in rotating
machinery to prevent damage of the parts in contact. Viscosity, like Young’s modulus of
solid materials, is a material property that is useful in the calculation of shear stresses
developed between a fluid and a solid body.

A capillary tube is used to determine the viscosity of a fluid via the formula

µ =
πd4

128L

P1 − P2

Q
, (1.2.2)

where d is the internal diameter, L is the length of the capillary tube, P1 and P2 are
the pressures at the two ends of the tube (oil flows from one end to the other, as shown
in Fig. 1.5), and Q is the volume rate of flow at which the oil is discharged from the tube.

Internal diameter, d

1
P

2
P

L

x

r

)(rv
x

Fig. 1.5 Measurement of viscosity of a fluid using capillary tube
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Example 1.2.3

(Heat flow in solids) We wish to determine the heat loss through the wall of a
furnace. The wall typically consists of layers of brick, cement mortar, and cinder block
(see Fig. 1.6). Each of these materials provides a varying degree of thermal resistance.
The Fourier heat conduction law

q = −k
dT

dx
(1.2.3)

provides a relation between the heat flux q (heat flow per unit area) and gradient of
temperature T . Here k denotes thermal conductivity (1/k is the thermal resistance) of
the material. The negative sign in Eq. (1.2.3) indicates that heat flows from a high-
temperature region to a low-temperature region. Using the continuum mechanics equa-
tions, one can determine the heat loss when the temperatures inside and outside of the
building are known. A building designer can select the materials as well as thicknesses
of various components of the wall to reduce the heat loss (while ensuring necessary
structural strength – a structural analysis aspect).

Furnace

Cross-section

of the wall

x

Fig. 1.6 Heat transfer through a composite wall of a furnace

The previous three examples provide some indication of the need for studying

the response of materials under the influence of external loads. The response of

a material is consistent with the laws of physics and the constitutive behavior

of the material. This book has the objective of describing the physical principles

and deriving the equations governing the stress and deformation of continuous

materials, and then solving some simple problems from various branches of en-

gineering to illustrate the applications of the principles discussed and equations

derived.

1.3 Objective of the Study

The primary objective of this book, as already stated, is twofold: (1) use the

physical principles to derive the equations that govern the motion and ther-

momechanical response of materials and systems; and (2) application of these

equations for the solution of specific problems of engineering and applied science

(e.g., linearized elasticity, heat transfer, and fluid mechanics). The governing
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equations for the study of deformation and stress of a continuous material are

nothing but an analytical representation of the global laws of conservation of

mass and balance of momenta and energy, and the constitutive response of the

continuum. They are applicable to all materials that are treated as a continuum.

Tailoring these equations to particular problems and solving them constitute a

bulk of engineering analysis and design.

The study of motion and deformation of a continuum (or a “body” consisting

of continuously distributed material) can be broadly classified into five basic

categories:

(1) Kinematics

(2) Conservation of mass

(3) Kinetics (balance of linear and angular momentum)

(4) Thermodynamics (first and second laws of thermodynamics)

(5) Constitutive equations.

Kinematics is a study of the geometric changes or deformation in a continuum,

without the consideration of forces causing the deformation. The principle of

conservation of mass ensures that the mass of the deforming medium is con-

served when no mass is created or destroyed. Kinetics is the study of the static

or dynamic equilibrium of forces and moments acting on a continuum, using

the principles of balance of linear and angular momentum. This study leads to

equations of motion as well as the symmetry of stress tensor in the absence of

body couples. Thermodynamic principles are concerned with the balance of en-

ergy and relations among heat, mechanical work, and thermodynamic properties

of the continuum. Constitutive equations describe thermomechanical behavior

of the material of the continuum, and they relate the dependent variables in-

troduced in the kinetic description to those introduced in the kinematic and

thermodynamic descriptions. Table 1.1 provides a brief summary of the relation-

ship between physical principles and governing equations, and physical entities

involved in the equations. To the equations derived from physical principles,

one must add boundary conditions of the system (and initial conditions if the

phenomena are time-dependent) to complete the analytical description.

1.4 Summary

In this chapter, the concept of a continuous medium is discussed and the major

objectives of the present book, namely, (a) use of the principles of mechanics

to derive the equations governing a continuous medium, and (b) applications of

these equations in the solution of specific problems arising in engineering, are

presented. Mathematical formulation of the governing equations of a continuous

medium necessarily requires the use of vectors, matrices, and tensors – mathe-

matical tools that facilitate analytical formulation of the natural laws. Therefore,
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Table 1.1 Major topics of the present study, principles of mechanics used, resulting
governing equations, and dependent variables involved

Topic of study Physical Resulting Variables

principle equations involved

1. Kinematics Based on geometric Strain–displace- Displacements
changes ment relations and strains

Strain rate– Velocities and

velocity relations strain rates

2. Mass Conservation of Continuity Density and
mass equation velocities

3. Kinetics Balance of linear Equations of Stresses, and
momentum motion velocities

Balance of angular Symmetry of Stresses
momentum stress tensor

4. Thermodynamics First law Energy equation Temperature,
heat flux,
stresses,
and velocities

Second law Clausius–Duhem Temperature,
inequality heat flux, and

entropy

5. Constitutive Constitutive Hooke’s law Stresses, strains,
equations axioms heat flux, and
(not all relations temperature
are listed) Newtonian fluids Stresses, pressure,

velocities
Fourier’s law Heat flux, and

temperature
Equations of state Density, pressure,

temperature

6. Boundary All of the above Relations between All of the above
conditions principles and kinematic and variables

axioms kinetic variables

it is useful to gain certain operational knowledge of vectors, matrices, and tensors

first. Chapter 2 is dedicated to this purpose.

The study of principles of mechanics is broadly divided into topics outlined in

Table 1.1. The first four topics constitute the subjects of Chapters 3 through 6,

respectively. For the convenience of analysis, a continuum may be treated either

as a solid or a fluid (liquids and gases), and equations derived in Chapters 3

through 6 are specialized in Chapter 7 to study, through some simple problems,

the behavior of solids and fluids.

Many of the concepts presented herein are the same as those that were most

likely introduced in undergraduate courses on mechanics of materials, heat trans-

fer, fluid mechanics, and material science. The present course brings together
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10 INTRODUCTION

these courses under a common mathematical framework and, thus, may require

mathematical tools as well as concepts not seen before. Readers must motivate

and challenge themselves to learn the new mathematical concepts introduced

here, because the language of engineers is mathematics. This subject also serves

as a prelude to many graduate courses in engineering and applied sciences.

While this book is self-contained for an introduction to continuum mechanics,

there are several books that may provide an advanced treatment of the subject.

The graduate level text book by the author, An Introduction to Continuum

Mechanics with Applications, 2nd ed. (Cambridge University Press, New York,

2013), provides additional and advanced material. Interested readers may consult

other titles listed in References for Additional Reading at the end of each

chapter.

Problems

1.1 The end deflection (in the direction of the force) of a cantilever beam subjected to end

load W (N) is given by

δ =
WL3

3EIy

,

where L (m) is the length, E (N/m)2 is Young’s modulus, and Iy (m4) is the moment
of inertia of the beam about the y-axis. If the beam is of length L = 3 m, and has a
cross-section of channel shape with width b = 300 mm and height h = 80 mm, as shown
in Fig. P1.1, determine the maximum tensile and compressive stresses in the beam, if
the stress is σ(x, z) = M(x)z/Iy , where z is the transverse coordinate measured from
the geometric centroid of the cross-section and M is the bending moment, which is a

function of position x along the length of the beam. The bending moment is taken as
positive clockwise at any section x along the beam.

h

b

L

z

x

W

12 mmt =
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z

y

1
c

2
c

1
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2
A

Fig. P1.1

1.2 The velocity field of fully developed flow through a circular pipe of diameter d and
length L is given by (see Fig. 1.5)

vz(r) = −

d2

16µ

dP

dx

(

1 − 4
r2

d2

)

,

where x is the coordinate along the pipe, r is the radial coordinate, µ is the fluid

viscosity, and dP/dx is the pressure gradient in the x-direction. Show that the viscosity
µ is given by

µ = −

πd4

128Q

dP

dx
,
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