Principles of Radiometric Dating

The time dependent decay of naturally-occurring radioactive isotopes or in-growth of their radioactive or stable daughter products form the basis of radiometric dating of several natural processes. Developed in the beginning of the last century mainly to determine the absolute ages of rocks and minerals, radiometric chronology now plays a central role in a broad range of Earth and planetary sciences - from extra-solar-system processes to environmental geoscience. With the pre-requisite of only college level knowledge in physics, chemistry and mathematics, this concise book focuses on the essential principles of radiometric dating in order to enable students and teachers belonging to diverse fields of studies to select, understand, and interpret radiometric dating results generated and published by professionals.

Kunchithapadam Gopalan is Honorary Scientist of the Indian National Science Academy. After his postdoctoral research on meteorites and moon rocks with Professor G. W. Wetherill at UCLA, Gopalan initiated modern isotope geoscientific studies in India at the Physical Research Laboratory, Ahmedabad and the National Geophysical Research Institute, Hyderabad. His notable distinctions include the Bhatnagar award of the Indian Council of Scientific and Industrial Research, M. S. Krishnan Gold Medal of the Indian Geophysical Union, Medal of Honour of the Indian Society for Mass Spectrometry, and Fellowship of the three national academies of science.
Principles of Radiometric Dating

Kunchithapadam Gopalan
The author dedicates this book to the two authors of his being (parents, Ramamrutham Kunchithapadam and Pattammal Kunchithapadam), and the three authors of his becoming (mentors, Prof V. S. Venkatasubramanian, Prof G. W. Wetherill and Prof D. Lal).
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>xiii</td>
</tr>
<tr>
<td>1. Basics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Nuclear Size and Constituents</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Fundamental Forces</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Nuclear Mass</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Equivalence of Mass and Energy</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Periodic Table</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Nuclear Composition and Stability</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Nuclear Binding Energy</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>Cosmic Abundances</td>
<td>9</td>
</tr>
<tr>
<td>2. Nuclear Transformations</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Spontaneous Nuclear Transformations</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Induced Nuclear Transformations</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Induced Nuclear Transformations in the Laboratory and Nature</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Role of Natural Radioactivity in Geodynamics and Geochronology</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Statistical Aspect of Radioactivity</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Binomial Distribution for Radioactive Disintegrations</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Poisson Distribution</td>
<td>21</td>
</tr>
<tr>
<td>3. Nucleosynthesis</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Stellar Nucleosynthesis</td>
<td>24</td>
</tr>
<tr>
<td>4. Isotopics</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Isotopic Abundance</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Isotope Effect in the Nuclear and Atomic Domains</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Notation of Isotopic Abundances</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Mixtures of Isotopically Different Components</td>
<td>36</td>
</tr>
</tbody>
</table>
5. Radioactivity and Radiometric Dating

5.1 Introduction
5.2 Radioactive and Radiogenic Isotope Dating
5.3 Long-lived Parent-daughter Couples used in Radiometric Dating
5.4 Short-lived Parent-daughter Couples used in Radiometric Dating
5.5 Interpretation of t, Radioactive Decay Interval
5.6 Isochron Concept, Isotope Equilibration, and Closure Temperature
5.7 Termination of a Single Stage Growth in the Past
5.8 Recognition of Events Causing Isotopic Equilibration on Different Scales
5.9 Projection of Present Day Isotopic Composition Back in Time
5.10 Reservoir Ages
5.11 Coupling Two Different, But Chemically Identical Parent-daughter Systems
5.12 Concordia and Discordia
5.13 Coupling Two Chemically Different Decay Systems
5.14 Chemical and Half-life Diversity of Parent-daughter Pairs
5.15 Radiometric Dating by Indirect Radiogenic Effects
5.16 Conclusion

6. Mass Spectrometry and Isotope Geochemistry

6.1 Introduction
6.2 Principles of Mass Spectrometry
6.3 Ion Detectors
6.4 Sequential vs Simultaneous Detection of Ion Beams
6.5 Improved Mass Spectrometers
6.6 Types of Ion Sources Used in Isotope Geochemistry
6.7 Typical Commercial Mass Spectrometers Using Different Ion Sources
6.8 Mass Fractionation in Mass Spectrometers
6.9 Absolute Abundance of an Isotope
6.10 Sample Size Requirements
6.11 Mass Spectrometry vs Decay Counting
6.12 Accelerator Mass Spectrometer

7. Error Analysis

7.1 Introduction
7.2 Systematic and Random Errors
7.3 Measurement of Random Data
7.4 Population Mean and Sample Mean
7.5 Propagation of Measurement Uncertainties
7.6 Standard Deviation of the Mean of n Measurements
7.7 Joint Variation of Two or More Random Variables
7.8 Regression Analysis
7.9 York’s Solution
7.10 Measure of Goodness-of-fit
Contents

8. Meteorites: Link between Cosmo- and Geochemistry

8.1 Introduction 110
8.2 Nucleocosmochronology 111
8.3 Extinct Nuclides and Formation Interval 112
8.4 Meteorites 114
8.5 Nebular condensation 117
8.6 Planetary Accretion 118
8.7 Isotope Abundances in the Solar Nebula 119

9. Chronology of Meteorite History

9.1 Introduction 121
9.2 Stage 1: Formation Intervals from Extinct Isotopes 124
9.3 Stages 2 through 4: Formation Ages of Meteorites 127
9.4 Rb-Sr, Sm-Nd and U-Pb Ages of Meteorites 129
9.5 Very High Precision Model Ages 131
9.6 Meteorite Ages Much Younger than 4.5 Ga 134
9.7 Stage 5: Gas Retention Ages and Post-Formational Cooling and Heating Histories 134
9.8 Stage 6: Duration of Meteorites as Small Independent Objects in Space 137
9.9 Stage 7: Terrestrial Residence Time of Meteorite Finds 139

10. Chemical Evolution of the Earth

10.1 Composition of Terrestrial Planets and Chondritic Meteorites 140
10.2 Energetic Processes During the Final Stages of Earth Accretion 141
10.3 Element Segregation: Some Geochemical Rules 142
10.4 Segregation of Major and Trace Elements During Melting or Igneous Processes 143
10.5 Graphical Representation of Inter-Element Variations in Compatibility 145
10.6 Melting and Crystallization Models 146
10.7 Combined Partial Melting and Recrystallization 150
10.8 Observational Constraints on the Structure and Composition of the Modern Mantle 151
10.9 Earth as a Large Geochemical System 155
10.10 Elemental Chemistry of Mid-Ocean-Ridge Basalts, Ocean-Island Basalts and Continental Crust 157

11. Chronology of Earth History

11.1 Introduction 161
11.2 Early Siderophile-Lithophile Segregation and Timing of Core Formation 163
11.3 Early Lithophile-Atmophile Separation and Timing of the Primitive Atmosphere 165
11.4 Lithophile-Lithophile Separation and Timing of the Early Crust 168
11.5 142Nd Evolution in the Earth’s Mantle 171
11.6 143Nd Evolution in the Earth’s Mantle 172
11.7 87Sr Evolution in the Earth’s Mantle 175
11.8 Coupling Neodymium and Strontium Data 176
11.9 206Pb, 207Pb Evolution in the Earth’s Mantle 180
The time-dependent accumulation of helium and lead from the radioactive decay of uranium in minerals and rocks was suggested by Rutherford in 1905 as a means of determining their absolute ages. This seminal idea has been assiduously pursued in the last century by unorthodox physicists and chemists to detect and quantitatively measure numerous radioactive isotopes of widely varying lifetimes and abundances in natural systems. Absolute age determination based on these isotopes, called radiometric dating, now plays a central role in a broad range of Earth and planetary sciences: paleoseismology; paleomagnetism; paleooceanography; igneous, metamorphic and sedimentary petrology; geomorphology; geochemistry; tectonics; nucleosynthesis; cosmochemistry; planetary science; geobiology; paleoclimatology; paleoanthropology; and archeology. Assuming that the reader has only college level knowledge of physics, chemistry, and mathematics, this concise book (about 200 pages) focuses on the essential principles of radiometric dating in order to enable the students and teachers in various fields to quickly figure out the criteria to be met by parent-daughter systems and samples relevant to their specialization. This book draws heavily on three classic review articles which, in my view, capture the intellectual appeal and beauty of the subject for a very wide audience (Wetherill et al., 1981; Wasserburg, 1987; Allegre, 1987). I believe that this book will succeed in improving students’ understanding and appreciation of radiometric dating results generated and published by professionals. I hope it would also stimulate interest in students to take up isotope geology as a serious study and reach out for the excellent and comprehensive books on the subject.

The material presented in each of the 11 chapters is self-contained. However, the reader is urged to read all the chapters, as they arestrung together into a concise, continuous, and easily comprehensible narrative to illuminate the subject as a whole. Vital points behind radiogenic isotope chronometry are stressed upon more than once. The reference list is mainly for students interested in further reading.

Chapter 1 covers the basic facts of nuclear and atomic physics, nuclear binding energy as a measure of nuclear stability, and the variety and relative abundance of different elements in the sun and the primitive meteorites. Chapter 2, then, moves on to the transformation of composition of nuclides, either spontaneously (radioactivity) or by external agents (induced nuclear reactions), and highlights the role of feeble natural radioactivity, both in driving and dating planetary processes. It ends with a section on an important aspect of radioactivity, namely its statistical nature. Chapter 3, on nucleosynthesis, builds on the first two chapters to show that the process of formation of elements (strictly-speaking, stable and unstable nuclides) inherited by the Solar System, is due to
a complex combination of nuclear reactions induced by charged particles in the interior of stars, and by neutrons in the final stages of stellar evolution. The chapter brings out the important point that the science of radiometric chronology, pivotal in many discrete disciplines, rests on the time required by various unstable nuclides, produced in stellar and terrestrial nuclear reactions, to reach a stable nuclear composition. Chapter 4 on ‘isotopics’ introduces the reader to the practical unit of measuring isotope abundances, the dramatic differences in isotope effects between nuclear and atomic domains, and familiarizes the reader with the notation of isotopic mixtures of an element. The chapter ends with the simple mathematical derivations of mixtures of isotopically different elements.

There are many and somewhat different ways in which the radioactive isotopes and their daughter products are used to date natural events and processes. But, the one common feature of these different methods is that they all measure a radioactive decay interval. It is only the meaning and interpretation of a measured decay interval that depends on the scientific context, the sample analyzed, the decay system selected, and the analytical method employed. Chapter 5 builds on this underlying unifying principle to show that all known applications of radiometric dating follow from the creative use of the basic radioactive decay process and imaginative selection of natural samples. I believe that this compact and generalized treatment can enhance critical and individualistic thinking among users of radiometric age results. The mathematical equations in this chapter are difficult only superficially, as they are based on elementary mathematics.

Advancements in mass spectrometers have largely dictated the advances in radiometric dating. Chapter 6 relies on simple figures to explain the three basic components of mass spectrometers and improvements in each of them, in a reader friendly way. Chapter 7 provides a rigorous yet easily understandable treatment of statistical error analysis.

Published text typically examines each isotope system separately, chapter after chapter. In contrast, chapters 8, 9, 10, and 11 in this book explore a few aspects of the evolutionary chronology of meteorites, the least evolved planetary objects available for laboratory analysis, and the Earth, a highly evolved planet, respectively, by examining relevant isotopic systems that illuminate the temporal aspects of evolution. Illustrations or case studies have been carefully chosen to bring out the excitement of research and discovery in radiometric chronology, in particular, and radiogenic isotope geology, in general.

Finally, each chapter begins with an apt quotation(s) from famous personalities to alert the readers of its content and also to leave a lasting impression on their minds.

Readers are invited to write to me, at gopalank1@rediffmail.com, regarding any errors, comments, and suggestions for improvement. Positive feedbacks are, of course, welcome, if they are warranted. I do hope that readers from various fields will find this book a good investment as well as a quick reference source.
I am grateful to Professor J. D. Macdougall and Professor M. E. Bickford for reading all the chapters of the book in order to provide constructive suggestions, improvements in its presentation, and the correction of numerous errors in the language. I am indebted to Professor R. K. O’Nions and Professor Bor-ming Jahn for their encouragement, constructive criticism and suggestions for improvement. However, all the shortcomings in this book and the errors of omission are entirely my responsibility. I thank V. Rajasekhar for the art work. I thank M. Choudhary of Cambridge University Press in India for his encouragement and taking the necessary decisions that enabled me to publish this book. I am very grateful to the Indian National Science Academy for giving me the position of the Honorary Scientist, which enabled me to write this book. Finally, my thanks go to my wife, Savithri and son, Ramesh for their understanding and support.

I am grateful to the publishers and authors listed below, for permission to copy or redraw figures from their journals and books for which they hold the copyrights. Reference to the original source of such figures is given within individual figure captions.

Academic Press, UK
 Using geochemical data (Rollinson, 1993) 2 figures
American Association for the Advancement of Science
 Science 1 figure
American Astronomical Society
 Astrophys. J (lett) 1 figure
American Physical Society
 Physical Review Letters 1 figure
Annual Reviews, Inc
 Annual Reviews of Earth and Planetary Sciences 1 figure
Cambridge University Press
 Radiogenic isotope geology (Dickin, 2005) 1 figure
 The solid earth (Fowler, 1990) 1 figure
 Geochemistry: An Introduction (Albarede, 2003) 1 figure
Acknowledgments XIV

Elsevier Science Publishers

- *Geochimica et Cosmochimica Acta* 2 figures
- *Earth and Planetary Science Letters* 1 figure
- *Earth as an evolving planetary system (Condie, 2005)* 1 figure

Indian Society for Applied Geochemists

- *J. Appl. Geochemistry* 12 figures

John Wiley Publishers

- *Geochemistry (White 2013)* 2 figures
- *Early Earth Systems (Rollinson, 2007)* 2 figures

Harvard University Press

- *From Stone to star (Allegre, 1992)*

Nature Publishing Group

- *Nature* 3 figures

Prentice Hall

- *Principles of igneous and metamorphic petrology (Philpotts, 1990)* 2 figures
- *Geochemistry: Pathways ad processes (Richardson and McSween, 1989)* 1 figure

Princeton University Press

- *How to build a habitable planet (Langmuir and Broecker, 2012)* 4 figures

Royal Society of London

- *Philosophical Transactions, Royal Society of London* 1 figure

Springer -Verlag GmbH

- *Absolute age determination (Geyh and Schleicher, 1990)* 1 figure

Stanford University Press

- *The age of the earth (Dalrymple, 1991)* 1 figure

Taylor and Francis group

- *Thinking like a physicist (Thompson, 1990)*

University science books

- *The Physical Universe: An introduction to Astronomy (Shu, 1982)* 1 figure