
Cambridge University Press
978-1-107-19776-3 — Attosecond and Strong-Field Physics
C. D. Lin , Anh-Thu Le , Cheng Jin , Hui Wei 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1
Elements of Atoms, Molecules,

andWave Propagation

1.1 One-Electron Atoms

1.1.1 Hydrogenic Atoms andWavefunctions

This book begins with the simplest hydrogenic atom. Within the spectral resolution of

its interaction with ultrafast light pulses, this atom can be considered as a nonrelativistic

electron in the field of a Coulomb potential V(r) = −Z/r from the nucleus of infinite mass

with positive charge Z(= 1). In spherical coordinates, the eigenstate can be expressed as

ψElm(r) = REl(r)Ylm(θ , φ), (1.1)

where Ylm is the familiar spherical harmonic. In this book, atomic units, where m = |e| =
h̄ = 1 will be used unless otherwise noted. Here, m and e are the mass and charge of the

electron, respectively. The inside back cover of the book gives fundamental constants and

conversion factors that are useful for attosecond and strong-field physics.

Introducing uEl(r) = rREl(r), the radial equation for uEl reads
[

−1

2

d2

dr2
+ l(l + 1)

2r2
+ V(r)

]

uEl(r) = EuEl(r). (1.2)

For the bound states, the eigenvalues are

En = − Z2

2n2
, (1.3)

with the principal quantum number n.

The radial wavefunctions are given by

Rnl(r) = unl(r)

r
= Nnle

− Z
n r

(

2Z

n
r

)l

1F1

(

l + 1 − n, 2l + 2,
2Z

n
r

)

, (1.4)

where 1F1 is the confluent hypergeometric function. The normalization factor Nnl is

Nnl = 1

(2l + 1)!

√

(

2Z

n

)3 (n + l)!

2n(n − l − 1)!
. (1.5)

For the wavefunction of a continuum state, let E = k2/2, the radial equation of a

hydrogenic atom, where
[

d2

dr2
− l(l + 1)

r2
+ 2Z

r
+ k2

]

uEl(r) = 0 (1.6)
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2 Elements of Atoms, Molecules, and Wave Propagation

has two linearly independent solutions: the regular Coulomb function Fl(γ , kr) and the

irregular Coulomb function Gl(γ , kr). The former vanishes at r = 0 while the latter

diverges. Therefore the allowed solution takes the form

uEl(r) = CFl(γ , kr), (1.7)

where the Sommerfeld parameter γ = −Z
k
.

The asymptotic behaviors of Fl and Gl are

Fl(γ , kr)
r→∞∼ sin(kr − γ ln(2kr) − lπ/2 + σEl), (1.8)

Gl(γ , kr)
r→∞∼ cos(kr − γ ln(2kr) − lπ/2 + σEl), (1.9)

where the real quantity σEl = arg[Ŵ(l + 1 + iγ )] is the Coulomb phase shift.

The radial wavefunctions uEl(r) are not square integrable. They are usually momentum

or energy normalized, which means

∞
∫

0

uEl(r)uE′l(r)dr = δ(k − k′) momentum normalized, (1.10)

∞
∫

0

uEl(r)uE′l(r)dr = δ(E − E′) energy normalized. (1.11)

For momentum normalization, the normalization constant C =
√

2
π

and for energy

normalization C =
√

2
πk

.

The hydrogenic wavefunction is also separable in parabolic coordinates defined by

ξ = r + z = r(1 + cos θ) (1.12)

η = r − z = r(1 − cos θ) (1.13)

φ = arctan
y

x
(1.14)

with 0 ≤ ξ ≤ ∞, 0 ≤ η ≤ ∞, 0 ≤ φ ≤ 2π . The surfaces ξ = const and η = const are

paraboloids of revolution about the z-axis.

In parabolic coordinates, the eigensolutions can be written as

ψ(ξ , η, φ) = f(ξ)g(η)�(φ), (1.15)

where the φ dependence is �(φ) = 1√
2π

eimφ with m = 0, ±1, ±2, . . . being the magnetic

quantum number.

For bound states these are called Stark states. For unbound states that exhibit azimuthal

symmetry (m = 0), the continuum wavefunction is

ψ(r) = Ceik
ξ−η

2 1F1(−iγ , 1, ikη) = Ceikz
1F1(−iγ , 1, ik(r − z)), (1.16)

where C depends on the normalization convention.
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3 One-Electron Atoms

1.1.2 Single Active Electron Model for Atoms

In principle, when an atom (or ion) consists of N electrons, one needs to solve the

complicated N-electron Schrödinger equation. However, for measurements where the

interaction involves only one electron, treating such an electron alone is desirable. In this

single “active” electron model, all of the other electrons are assumed to provide only an

effective potential to this active one. In this way, the whole atom may be analyzed in the

framework of a one-electron system in a central model potential V(r). This potential can be

written as a pure Coulomb potential plus a short-range potential

V(r) = −Zc

r
+ Vsr(r). (1.17)

The short-range potential Vsr(r) must satisfy

lim
r→∞

r2Vsr(r) = 0. (1.18)

Note that the parameter Zc in Equation 1.17 is the asymptotic charge felt by the active

electron. In a neutral atom, Zc = 1.

The radial equation for the bound state with energy E = −β2/2 for such a model one-

electron system is

[

d2

dr2
− l(l + 1)

r2
+ 2Zc

r
− 2Vsr(r) − β2

]

uEl(r) = 0. (1.19)

This equation can be solved numerically. The energy level Enl can be expressed by

Enl = − Z2
c

2(n − �nl)2
, (1.20)

where �nl is called the quantum defect as a result of the short-range potential Vsr(r). For

large n, the quantum defect is independent of n.

For the unbound state with energy E = k2/2, the radial equation for this system is

[

d2

dr2
− l(l + 1)

r2
+ 2Zc

r
− 2Vsr(r) + k2

]

uEl(r) = 0. (1.21)

This equation can also be solved numerically. In the asymptotic region in which Vsr

vanishes,

uEl(r)
r→∞∼ AFl(γ , kr) + BGl(γ , kr)
r→∞∼ C sin[kr − γ ln(2kr) − lπ/2 + σEl + δEl]. (1.22)

Here, γ = −Zc/k and σEl = arg[Ŵ(l + 1 + iγ )] is the Coulomb phase shift. C =
√

A2 + B2

is the normalization constant mentioned previously. δEl = arctan B
A

is the additional phase

shift caused by the short-range potential.
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4 Elements of Atoms, Molecules, and Wave Propagation

1.1.3 Scattering of an Electron by a Central Field Potential

Scattering by a Short-Range Potential

Consider an electron scattered by a target where the interaction can be modeled by a short-

range potential Vsr(r). In the asymptotic region where Vsr(r) vanishes, the wavefunction

should take the form:

ψ
r→∞∼ eikz + f(θ)

eikr

r
. (1.23)

Here, the energy of the incident electron E = k2/2. The first term is an incident plane

wave traveling along the z direction; the second term is an outgoing scattered spherical

wave. The scattering amplitude f(θ) is a complex quantity depending on scattering angle θ

and energy E. Due to cylindrical symmetry, f is independent of φ. The differential cross-

section is

dσ

d�
= | f(θ)|2, (1.24)

and the total cross-section is

σ =
∫

| f(θ)|2d� = 2π

π
∫

0

| f(θ)|2 sin θdθ . (1.25)

The total wavefunction ψ can be expanded in a series of partial waves as

ψ =
∞
∑

l=0

Al
uEl(r)

r
Pl(cos θ), (1.26)

where uEl(r) is the solution of the radial equation

[

d2

dr2
− l(l + 1)

r2
− 2Vsr(r) + k2

]

uEl(r) = 0. (1.27)

In the asymptotic region as r goes to infinity

uEl(r)
r→∞∼ Akrjl(kr) + Bkrnl(kr)
r→∞∼ A sin(kr − lπ/2) − B cos(kr − lπ/2)

= C sin(kr − lπ/2 + δEl), (1.28)

where jl and nl are spherical Bessel and Neumann functions, C =
√

A2 + B2 and δEl =
− arctan(B/A). The phase shift δEl is an important quantity because it carries information

about the short-range potential near the nucleus to physical effect in the asymptotic region.

Note that δEl depends on both the energy E and the angular momentum quantum number l.

With the help of

eikz =
∞
∑

l=0

(2l+1)iljl(kr)Pl(cos θ)
r→∞∼

∞
∑

l=0

(2l+1)eilπ/2 sin(kr − lπ/2)

kr
Pl(cos θ), (1.29)
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5 One-Electron Atoms

and comparison to Equation 1.26 in the asymptotic region (here, choose C = 1), one can

obtain

Ale
−iδEl = 1

k
(2l + 1)eilπ/2. (1.30)

By comparing Equations 1.23 and 1.26 in the asymptotic region, one can easily obtain

f(θ) = 1

k

∞
∑

l=0

(2l + 1)eiδEl sin δElPl(cos θ). (1.31)

The differential cross-section is | f(θ)|2. The total cross-section is

σ = 2π

π
∫

0

| f(θ)|2 sin θdθ = 4π

k2

∞
∑

l=0

(2l + 1) sin2 δEl. (1.32)

Each partial wave contributes

σl = 4π

k2
(2l + 1) sin2 δEl (1.33)

to the total cross-section. When evaluating the cross-section, it is not practical to include

all partial waves. If the short-range potential has a range a, it is reasonable to cut off the

partial-wave expansion at lmax ≈ ka. Thus, in low-energy scattering, only a few partial

waves are needed.

Scattering by a Pure Coulomb Potential

If the incident direction of the electron is chosen as the z direction, for a pure Coulomb

potential V(r) = −Z/r, the total wavefunction can be expressed in parabolic coordinates as

ψ = Ceikz
1F1(−iγ , 1, ik(r − z)), (1.34)

where γ = −Z/k. By choosing C = e−πγ/2Ŵ(1 + iγ ), at large |r − z| the wavefunction

has the asymptotic form

ψ
|r−z|→∞∼ eikz+iγ ln[k(r−z)]

(

1 + γ 2

ik(r − z)
+ · · ·

)

+ fc(θ)
eikr−iγ ln(2kr)

r

(

1 + (1 + iγ )2

ik(r − z)
+ · · ·

)

. (1.35)

The Coulomb scattering amplitude is given by

fc(θ) = − γ

2k sin2(θ/2)
e−iγ ln[sin2(θ/2)]+2iσE0 , (1.36)

in which σE0 = arg[Ŵ(1 + iγ )].

Clearly, the asymptotic expansion does not hold for θ = 0 (r = z). For large |r − z|
the incident wave and the outgoing wave have each acquired a logarithmic phase. The

differential cross-section is

dσc

d�
= | fc(θ)|2 = γ 2

4k2 sin4(θ/2)
= Z2

16E2 sin4(θ/2)
. (1.37)
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6 Elements of Atoms, Molecules, and Wave Propagation

This result is identical to the Rutherford formula derived from classical mechanics. The

Rutherford differential cross-section diverges strongly in the forward direction θ = 0, and

the total cross-section is not defined since the integral also diverges. This is the consequence

of the long-range Coulomb potential. However, in actual situations, the Coulomb potential

at large distance is screened by the environment, and thus the cross-section is finite.

Scattering by a Modiied Coulomb Potential

For an electron scattered by a model potential, which consists of a Coulomb part and a

short-range part V(r) = −Zc/r + Vsr(r), the scattering amplitude can be written as

f(θ) = fc(θ) + fs(θ), (1.38)

where fc is the Coulomb scattering amplitude given by Equation 1.36 with γ = −Zc/k, and

fs denotes the modification due to the short-range potential. Using partial-wave expansion,

fs is given by

fs(θ) = 1

k

∞
∑

l=0

(2l + 1)e2iσEl eiδEl sin δElPl(cos θ), (1.39)

where σEl = arg[Ŵ(l + 1 + iγ )] is the Coulomb phase shift. δEl is the additional phase shift

due to the short-range potential (see Equation 1.22). The differential cross-section is

dσ

d�
= | fc(θ) + fs(θ)|2. (1.40)

Scattering Cross-Section across a Resonance

In general, the phase shift δEl varies smoothly with the incident energy E as does the

partial cross-section σl. However, δEl may vary rapidly near a resonance. As a result, the

corresponding partial cross-section σl may also change dramatically in this energy interval.

Resonance usually happens for a certain partial wave. Near the resonance, the total cross-

section is dominated by this partial wave, that is, σ ≈ σl. For example, the effective

potential for the lth partial wave

Veff(r) = V(r) + l(l + 1)

2r2
(1.41)

may have a potential barrier at large r that can support a metastable state with a positive

energy Er that is below the top of the barrier. An incoming particle with an energy close to

Er will be trapped for a long time before it tunnels out of the barrier. This metastable state

has a finite lifetime or a resonance width Ŵ. In this example, the resonance is called a shape

resonance because it is an effect of the shape of the effective potential.

Near the resonance energy, the phase shift δEl can be expressed by

δEl = ξ + arctan
Ŵ/2

Er − E
, (1.42)

where ξ is a background phase shift and the second term changes rapidly by π as the energy

goes through the resonance from below to above.
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7 One-Electron Atoms

If ξ is negligible, the cross-section has the Breit–Wigner form

σl = 4π

k2
(2l + 1) sin2

(

arctan
Ŵ/2

Er − E

)

= 4π

k2
(2l + 1)

Ŵ2/4

(E − Er)2 + Ŵ2/4
. (1.43)

Near the resonance energy, k can be taken to be constant and so σl has a Lorentzian shape

characterized by the width Ŵ and the resonance energy Er.

For a nonzero ξ , by introducing the reduced energy ǫ = E−Er
Ŵ/2

and the shape parameter

q = − cot ξ , the cross-section can be reduced to

σl = 4π

k2
(2l + 1) sin2

(

ξ + arctan
Ŵ/2

Er − E

)

= 4π

k2
(2l + 1)

1

1 + q2

(q + ǫ)2

1 + ǫ2
. (1.44)

This cross-section Equation 1.44 has the form of the Fano profile. When q → ±∞ it

reduces to the Lorentzian profile. For small q values, σl is smaller at the center of the

resonance than at the wings. Such resonances are called window resonances.

The First Born Approximation

For collisions at high energies, partial-wave expansion is not practical. One can use the

plane wave or first Born approximation. Let the incident wave be given by ψi = eiki·r and

the scattered wave by ψf = eikf·r where the momentum ki and kf only differ in direction

but not in magnitude. Then, a momentum transfer can be defined as

q = kf − ki, (1.45)

with its magnitude given by

q = 2k sin
θ

2
. (1.46)

The scattering amplitude given by the first Born approximation reads

f B1 = − 1

2π
〈ψf|V|ψi〉 = − 1

2π

∫

V(r)e−iq·rdr. (1.47)

If the potential V(r) is central symmetric, the scattering amplitude is

f B1 = −2

q

∞
∫

0

rV(r) sin(qr)dr. (1.48)

Consider the incident electron scattered by N-independent atoms. Each atom is modeled

by a local potential Vi(r
′) and located at r = Ri. By making the first Born approximation,

the total scattering amplitude has a simple form:
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8 Elements of Atoms, Molecules, and Wave Propagation

f B1 = − 1

2π

∫

[

N
∑

i=1

Vi(r − Ri)

]

e−iq·rdr

=
N

∑

i=1

e−iq·Ri

[

− 1

2π

∫

Vi(r − Ri)e
−iq·(r−Ri)dr

]

=
N

∑

i=1

e−iq·Ri

[

− 1

2π

∫

Vi(r
′)e−iq·r′

dr′
]

=
N

∑

i=1

f B1
i e−iq·Ri (1.49)

in which f B1
i is the individual scattering amplitude for the ith atom. The phase factor e−iq·Ri

accounts for the interference between different scattering centers. This interference depends

on the momentum transfer q and the geometric configuration determined by Ri.

1.1.4 One-Electron Atoms in Weak Electromagnetic Fields

Basic Formulation

With the one-electron potential V(r), the Hamiltonian of a one-electron system in an

electromagnetic field reads

H = 1

2
(p + A)2 − φ + V(r), (1.50)

where A and φ are the vector and scalar potential of the electromagnetic field, respectively.

There is no external source for the cases considered in this book. Thus, it is convenient to

choose the Coulomb gauge

∇ · A = 0, (1.51)

φ = 0. (1.52)

The vector potential satisfies the wave equation

∇2A − 1

c2

∂2A

∂t2
= 0. (1.53)

In general, A can be represented as a superposition of plane-wave components with

propagation direction k̂ and polarization direction ǫ̂. Each component takes the form

A = ǫ̂A0(ω) cos(k · r − ωt), (1.54)

where ω is the angular frequency, k = ω
c

k̂ is the wave-number vector, and A0(ω) describes

the magnitude of this plane-wave component. Equation 1.51 requires the wave to be

transverse, i.e., k · ǫ̂ = 0. The intensity distribution (intensity per unit angular frequency

range) is given by

I(ω) = c

8π
ω2A2

0(ω). (1.55)
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9 One-Electron Atoms

Additionally, I(ω) is related to the number of photons N(ω) in a box with volume V by

I(ω) = cω

V
N(ω). (1.56)

In the Coulomb gauge, the Hamiltonian can be written as

H = −1

2
∇2 + V(r) − iA · ∇ + 1

2
A2 = H0 + H′(t), (1.57)

where H0 = − 1
2
∇2 + V(r) is the field-free Hamiltonian and H′(t) is the time-dependent

perturbation. Consider a weak field such that the A2 term can be dropped. The perturbation

becomes

H′(t) ≈ −iA · ∇. (1.58)

According to first-order, time-dependent perturbation theory, transition probability from

an initial state |a〉 to a final state |b〉 is given by

Pba(t) =

∣

∣

∣

∣

∣

∣

t
∫

0

〈b|H′(t′)|a〉eiωbat′dt′

∣

∣

∣

∣

∣

∣

2

, (1.59)

where |a〉 and |b〉 are eigenstates of the field-free Hamiltonian H0 with energies Ea and Eb,

respectively. ωba = Eb − Ea is the transition energy. For Eb > Ea, ωba > 0, which is the

case of photoabsorption, the transition probability due to a certain frequency component of

the electromagnetic field can be calculated by rewriting Equation 1.54 into two exponential

terms. After dropping the integral involving ei(ω+ωba)t′ , the result is

Pba(t) = A2
0(ω)|Mba(ω)|2

sin2
(

ω−ωba
2

t
)

(ω − ωba)2
. (1.60)

The matrix element Mba is given by

Mba(ω) = 〈b|eik·rǫ̂ · ∇|a〉. (1.61)

Assuming that the radiation is incoherent, the transition probability due to all of the

frequency components is obtained by integrating Equation 1.60 over the frequency ω.

When t is large,

sin2
(

ω−ωba
2

t
)

(ω − ωba)2
≈ π t

2
δ(ω − ωba). (1.62)

Then, the transition probability integrated over the frequency is

Pba(t) = π

2
A2

0(ωba)|Mba(ωba)|2t (1.63)

and the transition rate for photoabsorption is

Wba = π

2
A2

0(ωba)|Mba(ωba)|2 = 4π2

cω2
ba

I(ωba)|Mba(ωba)|2. (1.64)

An integrated absorption cross-section σba, which is the rate of absorption of energy

ωbaWba divided by I(ωba), can also be defined as

σba = 4π2

cωba

|Mba(ωba)|2. (1.65)
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10 Elements of Atoms, Molecules, and Wave Propagation

When Eb < Ea, ωba < 0, one can obtain the transition rate and cross-section integrated

over frequency for stimulated emission in a similar way:

Wba = 4π2

c|ωba|2
I(|ωba|)|M̃ba(|ωba|)|2, (1.66)

σba = 4π2

c|ωba|
|M̃ba(|ωba|)|2. (1.67)

The transition-matrix elements between photoabsorption and photoemission are related by

M̃ba(ω) = 〈b|e−ik·rǫ̂ · ∇|a〉 = −M∗
ab(ω). (1.68)

The stimulated emission and photoabsorption are in detailed balance, i.e., Wba = Wab and

σba = σab.

First-order perturbation theory can also be used for photoionization from an initial bound

state |i〉 to continuum states |E〉. The ionization rate per unit energy is

dWion

dE
= 4π2

cω2
Ei

I(ωEi)|MEi(ωEi)|2ρ(E), (1.69)

where ωEi = E − Ei, MEi(ω) = 〈E|eik·rǫ̂ · ∇|i〉 and ρ(E) is the number of states per unit

energy. If |E〉 is energy normalized, ρ(E) = 1. The photoionization cross-section (per unit

energy) is

σion = 4π2

cωEi
|MEi(ωEi)|2ρ(E). (1.70)

The semiclassical theory does not include spontaneous emission. According to quantum

electrodynamics, when there is no external electromagnetic field, the transition from

|a〉 to |b〉 (Ea > Eb) can still happen, and thus can emit a photon with momentum k

and polarization ǫ̂λ. Here, λ can be one or two to specify two independent polarizations

perpendicular to k. The spontaneous-emission rate for a single mode of photon is

Ws
ba = 4π2

Vω
|M̃λ

ba(ω)|2δ(ω − |ωba|). (1.71)

The matrix element M̃λ
ba is given in Equation 1.68 with ǫ̂ replaced by ǫ̂λ.

It is desirable to calculate the total rate for emitting photons with all possible energy ω,

propagation direction k̂, and polarization ǫ̂. Using box normalization, the number of photon

modes is given by

dn = V

(2π)3
k2dkd� = V

(2πc)3
ω2dωd�k, (1.72)

where �k is the solid angle. Integrating over dω, d�k and summing over two polarizations,

the total spontaneous emission rate is

Ws
ba = |ωba|

2πc3

∫

d�k

∑

λ=1,2

|M̃λ
ba(|ωba|)|2. (1.73)
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