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1 Introduction

1.1 Overview

The vector autoregressive (VAR) model is a widely used model for multivariate

time series analysis. It consists of a system of regression equations. VAR mod-

els are estimated by regressing each model variable on lags of its own as well as

lags of the other model variables up to some prespecified maximum lag order,

p. A VAR model with p autoregressive lags is referred to as a VAR(p) model.

VAR models are based on the notion that every model variable depends on its

own lags as well as the lags of every other model variable, rendering exclusion

restrictions on the interaction of lagged model variables not credible.

VAR models are typically based on monthly or quarterly data. For example,

let yt denote a K-dimensional vector of time series data, consisting of U.S. real

GNP growth (�gnpt ), the U.S. rate of inflation (πt), and the U.S. short-term

nominal interest rate (it), for t = 1, . . . , T . Then, suppressing the intercept, a

quarterly VAR(2) model for these three variables may be written as a system

of three equations

�gnpt = a11,1�gnpt−1 + a12,1πt−1 + a13,1it−1

+ a11,2�gnpt−2 + a12,2πt−2 + a13,2it−2 + u1t

πt = a21,1�gnpt−1 + a22,1πt−1 + a23,1it−1
(1.1.1)

+ a21,2�gnpt−2 + a22,2πt−2 + a23,2it−2 + u2t

it = a31,1�gnpt−1 + a32,1πt−1 + a33,1it−1

+ a31,2�gnpt−2 + a32,2πt−2 + a33,2it−2 + u3t ,

where K = 3 and the zero mean innovations uit , i = 1, 2, 3, are serially uncor-

related if the maximum lag order has been chosen appropriately. The model

allows these innovations to be mutually correlated with covariance matrix �u.

More compactly, we can express this VAR(2) model as

yt = A1yt−1 + A2yt−2 + ut , (1.1.2)
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where
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⎞
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The innovation vector ut is the linearly unpredictable component of yt , given

an information set consisting of the lagged values of all three model variables.

In the language of the literature on dynamic simultaneous equations models

such a model is known as a reduced form, defined as a model that expresses

the current values of the data as a linear function only of its own lagged values

and lagged values of the other model variables. The reduced-form VAR model

may be viewed as a finite-order approximation to a general linear process. This

model has proved useful for summarizing the properties of the data, for fore-

casting, for testing for the existence of equilibrium relationships tying together

two or more economic variables, and for quantifying the speed with which the

model variables revert back to the equilibrium following a disturbance.

This book instead focuses on the use of VAR models for structural model-

ing. The premise is that we can think of the reduced-form VAR(p) model as

representing data generated from the structural VAR(p) model

B0yt = B1yt−1 + · · · + Bpyt−p + wt, (1.1.3)

where yt is the K × 1 vector of observed time series data, t = 1, . . . , T , and

the deterministic terms have been suppressed for convenience. Furthermore,

Bi, i = 1, . . . , p, is a K × K matrix of autoregressive slope coefficients, the

K × K matrix B0 reflects the instantaneous relations among the model vari-

ables, and the K × 1 vector of mean zero structural shocks wt is serially uncor-

related with a diagonal covariance matrix �w of full rank such that the num-

ber of shocks coincides with the number of variables. The K × K matrix B−1
0

captures the impact effects of each of the structural shocks on each of the

model variables. Model (1.1.3) is structural in that the shocks are postulated to

be mutually uncorrelated with each element of wt having a distinct economic

interpretation. This fact allows one to interpret movements in the data caused

by any one element of wt as being caused by that shock. The structural shocks

in general are not directly observable, but under suitable conditions they may

be recovered from the reduced-form representation of model (1.1.3).

The reduced-form representation of model (1.1.3) can be obtained by

premultiplying both sides of (1.1.3) by B−1
0 , resulting in the model

yt = A1yt−1 + · · · + Apyt−p + ut , (1.1.4)
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1.1 Overview 3

where Ai = B−1
0 Bi and ut = B−1

0 wt , and may be estimated by unrestricted least-

squares (LS) or maximum likelihood (ML) estimation methods. Model (1.1.1)

is easily recognized as an example of such a model. It is readily apparent that,

given an estimate of this reduced form, all that is required for recovering the

structural model (1.1.3) is knowledge of the structural impact multiplier matrix

B−1
0 (or, equivalently, of its inverse B0).

Estimation of the matrix B0 requires additional restrictions on the data

generating process (DGP). If the matrix B0 can be solved for, given these

restrictions and the data, we say that the structural VAR model parameters,

(B0, B1, . . . , Bp, �w ), are identified or, equivalently, that the structural shocks

wt = B0ut are identified. The problem of finding suitable economically

credible restrictions on B−1
0 or B0 is known as the identification problem in

structural VAR analysis. Much of this book is concerned with alternative

strategies for achieving identification. As with any structural econometric

model, the validity of structural VAR analysis rests on the credibility of these

identifying restrictions. Finding a credible set of restrictions can be challeng-

ing. Depending on the identifying assumptions, the structural VAR model may

or may not be unique. In the latter case, there is a range of structural models

that are observationally equivalent in that they have the same reduced-form

representation.

The existence of a structural VAR model allows us to think of the variation

in the data as being driven by the cumulative effects of economically inter-

pretable structural shocks. Current observations of the data may be viewed

as a weighted average of current and past structural shocks. This insight is

important because it helps researchers quantify causal relationships in the data

that are obscured in reduced-form VAR analysis. For expository purposes and

without loss of generality, suppose that the structural shock of interest involves

changes in monetary policy not in response to macroeconomic conditions.

After expressing the estimate of the VAR model in a suitable form, one may

answer a range of questions about the causal effects of this shock.

� One may ask by how much an unexpected monetary policy tightening

in the current quarter will reduce output growth over the next two

years, when that policy change occurs all else equal and is not

followed by any further monetary policy shocks after the current

quarter. The response of output growth to this shock over time can be

quantified in the form of an impulse response function.
� One may ask how much of the variability of output growth on average

is accounted for by shocks to monetary policy as opposed to other

structural shocks. This question can be answered by a forecast error

variance decomposition.
� One may ask how much of the recession of 1982, for example,

is explained by the cumulative effects of earlier monetary policy
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4 Introduction

shocks. This question can be answered by constructing a historical

decomposition.
� One may also ask by how much the recession of 1982 would have

deepened had monetary policymakers not responded to output growth

at all. This question, under suitable conditions, may be answered by

a policy counterfactual.

This set of examples illustrates why the structural VAR framework is often

useful for economic analysis. The chief advantage of the structural VAR model

compared with alternative econometric approaches is that it tends to fit the

data well and only involves minimal identifying restrictions. In particular, it

does not impose cross-equation restrictions or exclusion restrictions on the

reduced form that tend not to be robust across alternative specifications of

the underlying economic model. The remainder of this book provides a more

detailed discussion of the historical evolution of the structural VAR approach,

of its implementation, of its properties, and of its pros and cons compared with

alternative structural econometric models.

1.2 Outline of the Book

Chapter 2

Chapter 2 of the book deals with the reduced-form specification of VAR mod-

els. It introduces stochastic and deterministic trends and shows that, under

weak assumptions, the purely stochastic component of a multivariate time

series process may be modeled as a finite-order VAR model with white noise

errors. This VAR model may be viewed either as the DGP or, more plausibly,

as an approximation to a more general linear DGP. If the VAR model is sta-

ble, it may equivalently be represented as a moving average (MA) process that

expresses the model variables as a weighted average of past regression errors.

This MA representation is a good point of departure for studying the implica-

tions of temporal or cross-sectional aggregation of the VAR model variables,

which can be shown to have important effects on the MA structure and hence

on the implied reduced-form VAR representation.

In practice, the parameters of a given VAR model of finite lag order are not

known and must be estimated from the data. We review not only the conven-

tional LS and conditional ML estimators of unrestricted stationary reduced-

form VAR models but also the bias-corrected LS estimator of unrestricted

stationary VAR models and the generalized least-squares (GLS) estimator of

restricted stationary VAR models. We then discuss how the presence of inte-

grated variables may affect the convergence rate and asymptotic distribution

of the LS and ML estimator, when estimating the model in levels, and what

assumptions are required for these estimators to remain asymptotically valid
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1.2 Outline of the Book 5

when the finite-order VAR model is only an approximation to a more gen-

eral linear process such as an invertible vector autoregressive moving average

(VARMA) process.

Next, we explain how to form predictions from the estimated VAR process,

and derive the one-step ahead mean-squared prediction error (MSPE) matrix,

which allows a formal discussion of the notion of Granger causality (or linear

predictability) in the VAR model. The one-step ahead MSPE matrix also plays

an important role in the design of commonly used data-based lag-order selec-

tion criteria for VAR models. Among the latter methods, we discuss top-down

and bottom-up sequential testing procedures, information criteria, and recur-

sive MSPE rankings. The latter approach is conceptually closely related to the

use of information criteria. We note that data-based lag-order selection meth-

ods not only tend to select lag orders that are too low in small samples, but that

they undermine the asymptotic validity of inference about the parameters of

the implied VAR model. We make the case that the use of a fixed conservative

lag order may circumvent these small-sample and asymptotic problems. Chap-

ter 2 also briefly reviews standard diagnostic tests for non-normality, for serial

correlation and for conditional heteroskedasticity in the regression errors, and

for the time invariance of VAR model parameters.

Although unrestricted reduced-form VAR models are most common in

empirical work, there have been proposals for restricting the lag structure of

reduced-form VAR models on economic grounds or on statistical grounds. We

conclude with a brief discussion of three classes of restricted reduced-form

VAR models, including (1) subset VAR models, which allow for the maximum

lag order to differ across model equations; (2) asymmetric VAR (AVAR) mod-

els, in which the maximum lag order is the same for each variable in all equa-

tions but differs across model variables; and (3) VARX models, where the X

refers to the inclusion of one or more exogenous variables. Loosely speaking,

a variable is exogenous if it is determined outside of the system of equations

under consideration. In other words, an exogenous variable is not subject to

current or lagged feedback from other VAR model variables, but depends only

on its own lags (or possibly lags of other exogenous variables). For example,

in a small open economy, the world interest rate may be considered exogenous

with respect to the domestic economic variables.

Chapter 3

Many economic variables can be thought of as exhibiting stochastic trends.

Such variables are integrated of order 1, which means that only their first

difference is stationary. If two or more integrated variables share a common

stochastic trend, they are referred to as cointegrated. More generally, cointe-

gration arises when linear combinations of integrated variables are stationary.

Although integrated and cointegrated models may be estimated in levels, as
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6 Introduction

discussed in Chapter 2, imposing integration and cointegration restrictions on

the reduced-form VAR model improves the finite-sample accuracy of the VAR

model estimates, if these restrictions are correct. Such restricted VAR parame-

terizations are known as vector error correction models (VECMs). If all VAR

model variables are integrated, but none are cointegrated, the VECM reduces

to a VAR model in first differences.

VECMs are discussed in Chapter 3. They are of special interest for struc-

tural VAR analysis because they allow economists to identify structural eco-

nomic shocks by imposing restrictions on the long-run behavior of selected

variables, as discussed in Chapter 10, which would not be possible if the level

representation of the VAR model were stationary. Moreover, common trends

implied by cointegration restrictions may have natural economic interpreta-

tions as equilibrium relationships.

We first define cointegration and then show how a reduced-form VAR model

in levels may be reparameterized as a VECM with special attention to the role

of deterministic terms in cointegrated processes. We discuss how VECMs may

be estimated by ML methods or by feasible GLS methods, possibly subject

to restrictions on the VECM parameters. Because VECMs are reparameter-

izations of VAR models in levels, they may alternatively be viewed as the

true model or as approximations to a more general linear DGP. In the latter

case, additional assumptions are needed to ensure the asymptotic validity of

the VECM estimator.

Chapter 3 reexamines the question of how to choose the lag order and how

to conduct diagnostic tests in the context of the VECM, stressing that many

of the results in Chapter 2 are robust to the presence of integrated and cointe-

grated variables in the model. We also address the important question of how

to specify the cointegrating rank when the nature of the cointegration relation-

ships is not already pinned down by economic theory.

Finally, we examine the costs of estimating VECMs in levels without impos-

ing integration and cointegration restrictions, and discuss the question of how

to choose between these two specifications. Given the uncertainty about the

validity of integration and cointegration restrictions in practice, and our inabil-

ity to discriminate between alternative VAR and VEC model specifications

reliably in small samples, a number of alternative asymptotic thought exper-

iments have been proposed including local-to-unity asymptotics and asymp-

totics for fractionally integrated processes. In Chapter 3, we briefly introduce

these ideas, which will come up again in Chapters 11 and 12.

Chapter 4

The structural VAR representation expresses the reduced-form VAR errors

as a linear combination of structural shocks with economic interpretation. If

www.cambridge.org/9781107196575
www.cambridge.org


Cambridge University Press
978-1-107-19657-5 — Structural Vector Autoregressive Analysis
Lutz Kilian , Helmut Lütkepohl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Outline of the Book 7

we know the structural impact multiplier matrix, which describes the weights

attached to each structural shock contributing to the reduced-form error, we

can always recover the structural VAR representation from the reduced-form

VAR representation, as discussed in Chapter 4. Knowledge of the structural

representation of the VAR model (or of the VECM) allows users to construct

the responses of each model variable to each structural shock (known as struc-

tural impulse responses), to assess the extent to which each structural shock

contributes to the variability in the model variables (known as a forecast error

variance decomposition), and to assess how the data would have evolved in the

absence of one or more of the structural shocks (known as a historical decom-

position). The latter decomposition also allows users to simulate counterfactual

outcomes, it can be used for the construction of policy counterfactuals which

examine how hypothetical changes in policy rules affect economic outcomes,

and it facilitates the construction of forecast scenarios which measure the

extent to which a baseline forecast would change in response to certain

hypothetical future events, expressed as sequences of future structural shocks.

Chapter 4 reviews and illustrates each of these tools, highlighting alternative

representations used in the literature. The question of how to obtain the struc-

tural impact multiplier matrix is deferred to Chapters 8, 9, 10, 11, 13, 14, 15,

and 17.

Chapter 5

A substantial part of the VAR literature relies on Bayesian methods. Indeed,

many of the leading contributors to the VAR literature have been Bayesian

econometricians. For example, the method of using sign restrictions for iden-

tification discussed in Chapter 13 was originally developed within a Bayesian

framework. It therefore is important for users of structural VAR models to

understand these methods, if only to be able to interpret Bayesian estimation

results reported in the literature.

Chapter 5 contrasts the central premises of the Bayesian estimation

approach with those of the frequentist estimation approach discussed in Chap-

ters 2 and 3. We review the role of the prior density of the model parameters,

the likelihood of the model, and the posterior density of the model parameters

in Bayesian analysis. We discuss how a Bayesian would construct a point esti-

mate from the posterior distribution, how Bayesian credible sets differ from

frequentist confidence intervals, how Bayesian model comparisons differ from

classical hypothesis testing, and how model averaging may be used as an alter-

native to model selection.

Because of the central role played by the posterior distribution of the

VAR model parameters in Bayesian estimation and inference, we provide a

brief overview of methods that may be used to sample from this distribution
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including direct sampling from a known posterior distribution, acceptance

sampling, importance sampling, Markov Chain Monte Carlo methods, the

Metropolis-Hastings algorithm, and the Gibbs sampler.

We then review the leading methods of specifying priors for the reduced-

form VAR parameters in empirical work that are all based on the premise

of a Gaussian VAR process. These methods include (1) a Gaussian prior for

the slope parameters for a given estimated error covariance matrix, (2) the

natural conjugate Gaussian-inverse Wishart prior, and (3) the independent

Gaussian-inverse Wishart prior. Making these methods operational is not

straightforward without further assumptions. A popular approach known as

the Minnesota or Litterman prior reduces the problem of specifying a high-

dimensional Gaussian prior distribution for all VAR slope parameters to one

of specifying a much smaller set of hyperparameters at the cost of imposing

additional parametric structure. Alternatively, priors may be imposed on the

VEC representation of a VAR model, allowing for cointegration or for near

unit roots. The latter approach is also known as the sum-of-coefficients prior.

Chapter 6

Chapter 6 puts the development of VAR models in historical context and

clarifies their relationship with other modeling frameworks used in macroe-

conometrics. We discuss what structural VAR models have in common with

dynamic simultaneous equations models (DSEMs) and how they differ from

traditional DSEMs of the type widely used in empirical macroeconomics until

the 1970s. We also examine the conditions under which DSGE models, which

have been popular since the 1980s, have a reduced-form VAR representation,

highlighting the fact that the VAR representation of DSGE model variables, if

it exists, typically will not be of finite order. Even more stringent conditions

are required for DSGE models to have a structural VAR representation.

DSGE models today are the leading alternative to structural VAR models

in macroeconometrics. We briefly review alternative approaches of evaluating

DSGE models by calibration, by frequentist, and by Bayesian estimation,

stressing the commonalities and differences between calibration methods and

GMM estimation, on the one hand, and calibration and Bayesian estimation, on

the other. We then contrast the pros and cons of DSGE models compared with

structural VAR models. As part of this discussion, we also address common

misperceptions about structural VAR models not being “structural” and about

DSGE models not requiring auxiliary assumptions about data transformations

and lag orders. The implications of the Lucas Critique for policy analysis in

DSGE models and in structural VAR models are also discussed. We conclude

that DSGE models and structural VAR models are complementary with each

approach having its own strengths and weaknesses. The chapter ends with

a brief overview of efforts to combine elements of structural VAR models
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1.2 Outline of the Book 9

with traditional DSEMs on the one hand and with DSGE models on the

other.

Chapter 7

The central objective in structural VAR analysis is to quantify causal relation-

ships in the data. Chapter 7 studies the precursors of structural VAR mod-

els, some of which continue to be used in empirical work to this day. Using

the debate over money-income causality as our motivating example, we trace

the evolution of the profession’s thinking about causality from the narrative

approach of Friedman and Schwartz (1963) to Granger causality tests in the

1970s with special attention to the concepts of strict exogeneity and predeter-

minedness. We explain why the profession lost interest in questions of Granger

causality in the 1980s and began to focus on unanticipated changes in eco-

nomic variables instead. The chapter focuses on the development of direct

measures of exogenous monetary policy shocks, of fiscal policy shocks, of

OPEC oil supply shocks, of news shocks based on macroeconomic announce-

ments, and of shocks to financial market expectations, for example. We trace

the further evolution of this literature from distributed-lag models of the impact

of directly observable exogenous shocks to VAR models driven by unob-

served exogenous shocks that can only be recovered with the help of additional

identifying assumptions.

Chapter 8

Although there have been important advances in how one determines the

specification of structural VAR models, in how structural VAR estimates are

presented, and in how the estimation uncertainty is captured, the question of

the identification of structural economic shocks has always been central in

this literature, and this question appropriately receives the most weight in our

book, starting with Chapter 8.

The chapter starts by contrasting the structural representation of VAR mod-

els with the reduced-form specification discussed in Chapters 2, 3, and 5. We

discuss the nature of the identification problem in structural VAR modeling and

illustrate how alternative normalizing assumptions affect the type of additional

restrictions required for the order and rank conditions for exact identification

to hold. Identification of unique structural shocks in a VAR model may be

achieved by imposing restrictions on the structural impact multiplier matrix of

the model (or alternatively on its inverse). These matrices govern the contem-

poraneous interaction of the model variables and/or of the structural shocks,

conditional on the lagged model variables. Hence, restrictions on these matri-

ces are commonly referred to as short-run identifying restrictions. There are

several ways of reducing the number of free parameters in the structural VAR
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model to be estimated, but the most common approach is to impose exclu-

sion restrictions that limit the contemporaneous feedback between some of the

model variables.

We emphasize that imposing a recursive ordering on the model variables

in the impact period, as is common in applied work, amounts to imposing

a particular causal chain that results in economically meaningless measures

of structural shocks, unless this ordering can be economically motivated.

Having reviewed common sources of economically meaningful identifying

restrictions, we consider several examples of recursively identified structural

VAR models with careful attention to the economic content of their identi-

fying assumptions. We stress that credibly identifying all structural shocks

by recursive orderings is feasible only in rare cases, but note that sometimes

recursive orderings may be used to identify one of the structural shocks with

the other structural shocks remaining unidentified from an economic point of

view. We also discuss examples of nonrecursively identified structural VAR

models. The chapter concludes with a brief discussion of the graph-theoretic

approach to identification. We point out that such data-based approaches to

identification are not designed to uncover economically meaningful structures

and hence are no substitute for economic reasoning in the construction of

structural VAR models.

Chapter 9

Having decided on the identifying restrictions, the question arises of how to

estimate the structural VAR model. There are three common approaches. We

can estimate the structural VAR model (1) by the method of moments or by

instrumental-variable (IV) methods, (2) by full information maximum likeli-

hood (FIML) methods, or (3) by Bayesian methods.

Perhaps the most common approach in applied work is the method of

moments. For exactly identified models, one proceeds in two steps. One first

estimates the reduced-form VAR model as described in Chapters 2 and 3.

One then solves for the structural impact multiplier matrix. If the structural

model is recursive, this may be accomplished by simply applying a Cholesky

decomposition to the covariance matrix of the reduced-form residuals. More

generally, we may use a nonlinear equation solver to solve the system of equa-

tions linking the unique elements of the covariance matrix of the reduced-form

residuals to the unknown elements of the structural impact multiplier matrix. A

third option that is computationally less demanding than a nonlinear equation

solver (and hence particularly appealing when working with nonrecursive

models) is to use the algorithm proposed by Rubio-Ramírez, Waggoner, and

Zha (2010). If there are more restrictions than required for exact identification,

rendering the model overidentified, we may solve the model in one step by

numerically minimizing the GMM objective function. In some cases, the
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method-of-moments estimator may also be constructed using traditional IV

regression techniques.

Another common approach is FIML estimation, which also accommodates

overidentified models, but in the latter case (like the GMM estimator) requires

the use of numerical methods. Finally, Bayesian estimation is common in

applied work. There are two alternative approaches. For exactly identified mod-

els it is standard to rely on conventional reduced-form priors, as discussed in

Chapter 5, to generate draws from the posterior of the VAR model, from each

of which an estimate of the structural impact multiplier matrix may be obtained

by applying the second step of the method of moments. An alternative to this

widely used approach is to specify a prior directly on the structural VAR rep-

resentation, which also accommodates the overidentified case, as discussed at

the end of Chapter 9.

Chapter 10

Finding enough short-run restrictions for identifying the structural shocks of

interest can be a challenge in practice. One alternative idea in the literature has

been to impose restrictions on the long-run response of the model variables

to selected shocks. In the presence of unit roots in some variables, but not in

others, this approach may allow us to identify at least some structural shocks.

The use of long-run restrictions has been appealing because many economists

find it easier to agree on long-run restrictions than on the short-run behavior of

the economy. It is not without important drawbacks, however.

Chapter 10 introduces a general framework for imposing both short-run

and long-run restrictions. We show how alternative specifications of the same

model affect how long-run restrictions are imposed. We discuss a range of

empirical examples of the use of long-run restrictions both in isolation and in

conjunction with short-run restrictions. We draw attention to the fact that spe-

cial care is needed in specifying such models to avoid some structural shocks

in the model having unintended permanent effects.

The chapter concludes with an overview of the limitations of models based

on long-run identifying restrictions including the fact that they require exact

unit roots in some model variables, their sensitivity to omitted variables, their

lack of robustness at lower data frequencies, their sensitivity to data transfor-

mations, and the fact that they yield nonunique solutions without additional

normalizations.

Chapter 11

As in the case of models identified by short-run restrictions, we may estimate

models identified by long-run restrictions (or by a combination of long-run and

short-run restrictions) by the method of moments, by IV methods, or by FIML

www.cambridge.org/9781107196575
www.cambridge.org


Cambridge University Press
978-1-107-19657-5 — Structural Vector Autoregressive Analysis
Lutz Kilian , Helmut Lütkepohl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

12 Introduction

methods, depending on the nature of the restrictions. Chapter 11 highlights

differences in the estimation of models subject to long-run restrictions, depend-

ing on whether the model is expressed as a stationary VAR model or in VECM

representation. We also review a number of practical problems with the esti-

mation of models identified by long-run restrictions, including that the estima-

tor of the long-run multiplier matrix may be unreliable, the near-observational

equivalence of shocks with permanent effects and shocks with persistent

effects, and weak instrument problems in implementing the estimator.

The chapter concludes with a review of an ongoing debate among macroe-

conomists over the ability of structural VAR models to recover the structural

impulse responses implied by DSGE models based on synthetic data gener-

ated by these DSGE models. This debate was triggered by Galí (1999) who

suggested that evidence based on structural VAR models identified by long-

run exclusion restrictions had important implications for DSGE modeling. We

reexamine this controversy, drawing on the insights provided in Chapters 10

and 11.

Chapter 12

Estimates of structural VAR models are subject to uncertainty. In practice,

users of VAR models are typically not interested in the estimation uncer-

tainty about the model parameters themselves, but in the uncertainty about the

implied estimates of the structural impulse responses and forecast error vari-

ance decompositions discussed in Chapter 4. For expository purposes, Chap-

ter 12 focuses on inference about structural impulse response estimates. It is

understood that the discussion (with some exceptions noted in the chapter) also

generalizes to related statistics such as forecast error variance decompositions.

The chapter starts with a review of impulse response confidence intervals based

on the delta method in stationary VAR models, followed by a detailed review of

how to generate bootstrap approximations to the sampling distribution of VAR

estimators and of how to use that information for the construction of bootstrap

confidence intervals for structural impulse responses.

Next we discuss potential limitations of both delta method and bootstrap

approaches in the VAR model and in the VECM context. The chapter high-

lights the special problems that arise in the possible presence of unit roots and

cointegration. We stress that pretesting for unit roots and cointegration under-

mines the validity of inference in structural VAR and VEC models. We first

discuss how standard methods of inference designed for stationary models can

be made robust to the possible presence of unit roots and cointegration, at

least asymptotically. We then review the use of local-to-unity asymptotics as

an alternative asymptotic approximation for the VAR model in levels when the

data are persistent. We also discuss nonstandard bootstrap methods designed

for local-to-unity processes and other methods designed to improve inference
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1.2 Outline of the Book 13

on structural impulse responses in that framework. Finally, we explain why

Bayesian methods of inference are not immune to the possible presence of

stochastic trends.

Standard methods of inference for structural impulse responses and related

statistics are pointwise. From an economic point of view we are often inter-

ested not so much in the value of a given response function at a given horizon

as in the overall shape and pattern of sets of structural impulse response

functions. Assessing these features requires the user to do joint inference.

Chapter 12 reviews recently proposed frequentist and Bayesian methods of

conducting joint inference about structural impulse responses and illustrates

the importance of these methods by example.

We also briefly explain how the implementation of the bootstrap approach

depends on whether we are interested in constructing bootstrap confidence

intervals, in conducting predictive inference, or in constructing bootstrap crit-

ical values for a test statistic. The chapter concludes with a range of empiri-

cal examples that illustrate the implementation of commonly used methods of

constructing confidence intervals for structural impulse responses.

Chapter 13

Although there are situations in which exclusion restrictions may be motivated

by economic theory or institutional features, it is rare for economists to be able

to make a strong case for such restrictions. In many situations, economic theory

only speaks to the sign of structural impulse responses on impact. For example,

in a typical bivariate model of demand and supply, we expect a negative supply

shock to lower quantity and to raise the price, whereas a positive demand shock

would raise both quantity and the price. In other words, economic theory has

implications for the sign of the impact responses. Only if the short-run supply

curve were vertical would imposing a zero restriction on the contemporaneous

effect of a demand shock on the quantity make economic sense.

This observation has motivated the idea of identifying structural VAR

shocks based on sign restrictions. Because sign restrictions are inequality

restrictions, the resulting structural models are no longer exactly identified,

but only set identified. Put differently, even with an infinite amount of data, we

can only narrow down each structural parameter estimate to a range of values

rather than to a point in the parameter space. This property also is shared by

the implied structural impulse responses and related statistics. As a result, the

methods of inference discussed in Chapter 12 cannot be used for sign-identified

models.

Chapter 13 examines in detail methods for approximating the set of iden-

tified structural impulse responses. Such approximations are typically con-

structed using Bayesian methods. We show how sign restrictions on impact

responses (“static sign restrictions”) may be complemented by sign restrictions
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14 Introduction

on responses at longer horizons (“dynamic sign restrictions”) and by inequal-

ity restrictions on linear and nonlinear transformations of structural impulse

responses. The chapter reviews several methods designed to evaluate the pos-

terior distribution of set-identified impulse responses with special attention to

the role of priors. We highlight the challenges in summarizing the posterior

information from sign-identified models, discuss the difficulties in interpret-

ing so-called median response functions, and demonstrate how this problem

may be overcome in practice.

A central concern with sign-identified VAR models is that the prior remains

asymptotically informative about the structural impulse responses. We discuss

alternative frequentist and Bayesian methods recently proposed in the literature

designed to make the role of the priors more explicit, to attenuate the role of

priors, or to inject more economic information into the priors. The chapter

concludes with a range of empirical examples and additional discussion on

how to combine sign restrictions and more conventional short-run and long-

run restrictions within the same structural VAR model.

Chapter 14

As we stressed in earlier chapters, the identification of structural shocks

typically relies on economically motivated restrictions that are imposed on

the data. An alternative strand of the literature exploits properties of the data

for identification. In particular, changes in the conditional or unconditional

volatility of the VAR errors may be used for identification. Chapter 14

discusses these approaches in some detail. We stress that this data-based

approach does not provide any guidance as to the economic interpretation

of the resulting “structural” shocks, however. It only achieves statistical

identification in that it produces a unique set of mutually uncorrelated shocks.

Thus, it is not a genuine alternative to the approaches discussed in earlier

chapters. It is nevertheless attractive because it allows us to formally test

traditional economically motivated exclusion restrictions by means of a test

of overidentifying restrictions. Chapter 14 examines this approach in a variety

of contexts including models with extraneous volatility changes, with Markov

switching in the variances, with smooth transitions in the variances, and with

generalized autoregressive conditionally heteroskedastic (GARCH) errors.

We note that in some cases, this approach supports conventional identifying

restrictions, whereas in others these restrictions can be rejected.

Chapter 14 also discusses an alternative data-based approach to identifica-

tion that exploits the non-Gaussianity of the VAR errors in many applications.

In this case, statistical identification may be achieved by insisting that the

structural shocks be stochastically independent rather than just uncorrelated.

In the Gaussian model, in contrast, uncorrelatedness implies independence.

As in the heteroskedastic model, this approach provides a means for testing
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more conventional identifying restrictions, if we are willing to postulate

independence.

Chapter 15

Yet another option for identifying structural VAR shocks is to rely on additional

extraneous data not already included among the VAR variables. Chapter 15 dis-

cusses two such approaches. The first approach relies on high-frequency inter-

est rate futures prices. The change in these prices around the time of a monetary

policy shift, suitably scaled to monthly frequency, is interpreted as the policy

shock. Responses of the variable of interest to these extraneous shocks may be

estimated outside of the VAR model and later imposed when estimating the

structural VAR model.

The second approach uses directly observed measures of exogenous shocks

as instruments in identifying exogenous variation in the VAR variable of inter-

est. This approach allows us to use the exogenous shock measures discussed in

Chapter 7 in the VAR context and is not limited to modeling monetary policy.

For example, direct measures of exogenous fiscal policy shocks may be used

as instruments to isolate the exogenous variation in fiscal variables.

Chapter 16

Typical VAR models include only a comparatively small number of variables.

In recent years, public access to time series data has improved to the point

that large panels of time series data are now available, often including dozens

or hundreds of variables. A reasonable presumption is that all of these vari-

ables potentially include information relevant to forming expectations and to

identifying structural shocks. Clearly, such large-dimensional models cannot

be estimated without imposing additional structure in estimation, however.

Two popular approaches to this problem have been structural factor-

augmented VAR (FAVAR) models and large-scale Bayesian structural VAR

models. FAVAR models reduce the dimensionality of the estimation problem

by imposing an approximate factor structure on the data, allowing us to

approximate any variable as a linear combination of the most important factors

contained in the panel of data. The advantage of this approach is that the set

of factors is of much lower dimension than the original set of model variables.

Its disadvantage is that it is not clear that the economically relevant structural

shocks can be identified based on factors or linear combinations of factors.

Large Bayesian structural VAR models, in contrast, solve the problem of

dimensionality by imposing priors on the estimation problem. An obvious

concern with the latter approach is that it is difficult to know how influential

that prior is, given that we are not able to estimate the model without the

prior.

www.cambridge.org/9781107196575
www.cambridge.org


Cambridge University Press
978-1-107-19657-5 — Structural Vector Autoregressive Analysis
Lutz Kilian , Helmut Lütkepohl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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One reason why such models are used in applied work is that they allow us

to trace the responses of a larger set of variables to a given structural shock than

would be possible using a conventional VAR model, providing an alternative

to traditional DSEMs which had the same ability but at the cost of impos-

ing stronger dynamic restrictions. Another reason is that such models greatly

increase the information set used in measuring structural shocks, helping us

address concerns about the informational structure of many small-scale struc-

tural VAR models. Chapter 16 reviews the derivation, specification, identifi-

cation, and estimation of these models, highlighting potential problems with

each approach. We also briefly discuss related approaches such as panel VAR

models and global VAR (GVAR) models.

Chapter 17

Structural VAR analysis is based on the premise that the structural VAR shocks

can be recovered from the reduced-form prediction errors. The corresponding

reduced-form MA representation is called a fundamental representation. If the

shocks in the reduced-form MA representation of the DGP are not the VAR

prediction errors, in contrast, the reduced-form MA representation of the VAR

model is nonfundamental, and it will in general not be possible to recover the

true structural shocks even asymptotically. Such a situation arises when the

econometrician’s model does not have all the information that economic agents

in the real world use in forming expectations. In other words, the reduced-

form VAR model is informationally deficient. An important special case of this

situation would be a model in which agents have forward-looking expectations

that cannot be captured based on the information set of the VAR model.

Most commonly, nonfundamental representations are associated with an

omitted-variable problem. The obvious response is to recognize that the root

of this problem is the omission of relevant variables and to extend the infor-

mation set, if possible. Note that the use of large-scale VAR models as dis-

cussed in Chapter 16 does not necessarily solve this problem because some

of the variables relevant to agents’ expectations may simply not be contained

in any database. For example, oil market participants may anticipate rising oil

prices because of fears about ethnic unrest in the Middle East, yet no database

includes time series capturing the determinants of these fears. There are cre-

ative solutions to this type of problem in specific cases, however, some of which

are discussed in Chapter 17.

Chapter 18

The standard VAR model is linear. In some cases, we may wish to allow

the model variables to depend nonlinearly on past observations of the model

variables rather than just linearly. Such models are collectively referred to as

www.cambridge.org/9781107196575
www.cambridge.org


Cambridge University Press
978-1-107-19657-5 — Structural Vector Autoregressive Analysis
Lutz Kilian , Helmut Lütkepohl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Outline of the Book 17

nonlinear VAR models. Examples of nonlinear dynamics include models with

smoothly evolving time-varying coefficients and models with coefficients that

change with the state of the economy. Nonlinear VAR models allow economists

to model target zones, stochastically switching regimes in the economy, grad-

ual transitions to new economic regimes, thresholds induced by transaction

costs, asymmetries in the responses of model variables to positive and negative

shocks, and many other economically relevant phenomena.

An important difference compared with linear VAR models is that nonlinear

structural impulse responses depend on the history of the data prior to the time

period in which a structural shock occurs as well as on the magnitude and sign

of this structural shock. This means that the structural impulse responses must

be evaluated by numerical methods. Although the effect of alternative histories

may be integrated out to arrive at an unconditional impulse response function,

the nature of the structural shock remains important even in that case. Put

differently, there is no unique set of structural impulse responses in nonlinear

models, but rather a family of responses indexed by the magnitude and sign of

the structural shock.

A common simplifying assumption in the literature has been that the nonlin-

ear model is linear conditional on past values of the model variables, allowing

the use of standard short-run exclusion restrictions. The use of sign restric-

tions is feasible as well, although it is not clear how to summarize the posterior

distribution of the set of structural impulse responses in that case. In contrast,

the use of long-run restrictions is not straightforward. The reason is that the

closed-form solutions for the construction of structural impulse responses in

linear models are not valid for nonlinear models. Rather, structural impulse

responses must be constructed by Monte Carlo integration. It is not clear how

to impose long-run restrictions on these numerical estimates. Neither do stan-

dard methods of constructing forecast error variance decompositions or histor-

ical decompositions apply in nonlinear VAR models.

Chapter 18 discusses the specification of nonlinear VAR models, their esti-

mation, the identification of structural shocks, and inference about statistics

such as structural impulse responses. We illustrate how existing methods for

VAR models must be adapted in the nonlinear context. We also discuss alter-

native proposals for constructing impulse responses in nonlinear models such

as the generalized impulse response function (GIRF). In addition, the chapter

reviews related nonlinear models in the literature, such as nonparametric VAR

models that allow for more flexible functional forms and noncausal VAR mod-

els that have been used to model nonfundamental representations of the type

discussed in Chapter 17.

Finally, we examine models that are linear in the parameters yet imply

nonlinear impulse response functions. A case in point is recently proposed

structural models that allow for asymmetries in the response to positive and

negative shocks, even in the impact period. For example, it is widely thought
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18 Introduction

that unexpected declines in the price of oil cause the gasoline price to fall less

quickly than an unexpected increase in the price of oil of the same magnitude

would cause the price of gasoline to increase. Using a common analogy, in the

former case, gasoline prices fall slowly like a feather; in the latter, they shoot

up like a rocket. We stress that the precise specification of the model matters

when modeling asymmetries. For example, widely used censored oil price

VAR models are invalid.

Chapter 19

The last chapter discusses practical issues related to trends, seasonality, and

structural change. We review alternative more flexible trend models such as

the HP filter and band-pass filters. We discuss how to combine variables with

different trend specifications within the same model. We summarize in some

detail the options for modeling seasonality in VAR models, and we discuss the

implications of structural breaks for the specification of VAR models.

www.cambridge.org/9781107196575
www.cambridge.org


Cambridge University Press
978-1-107-19657-5 — Structural Vector Autoregressive Analysis
Lutz Kilian , Helmut Lütkepohl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Vector Autoregressive Models

Structural VAR analysis is based on the premise that the DGP is well approxi-

mated by a reduced-form VAR model. In applied work, it is therefore important

to choose a suitable VAR specification, taking account of the properties of the

data. This chapter is devoted to the question of how to specify and estimate

reduced-form VAR models. In Section 2.1 stochastic and deterministic trends

in the data are discussed. Section 2.2 outlines the basic linear VAR model

and its properties. Section 2.3 examines the estimation of reduced-form VAR

models. Section 2.4 discusses how to generate predictions from VAR models,

and Section 2.5 introduces the concept of Granger causality. Lag-order selec-

tion and model diagnostics are discussed in Sections 2.6 and 2.7. Section 2.8

briefly reviews three classes of restricted reduced-form VAR models.

Given that the linear VAR model is one of the standard tools for empirical

research in macroeconomics and finance, there are many previous good expo-

sitions of the topics covered in this chapter. Our discussion draws heavily on

the material in Lütkepohl (2005, 2006, 2009, 2013)

2.1 Stationary and Trending Processes

We call a stochastic process covariance stationary or simply stationary if it has

time invariant first and second moments. Similarly, an economic variable is

referred to as covariance stationary if the underlying DGP is covariance sta-

tionary. More formally, the scalar process yt , t ∈ N or t ∈ Z, is covariance sta-

tionary if

E(yt ) = μ and Cov(yt , yt+h) = γh, ∀t, h.

Note that μ and γh are constants that do not depend on t. This property is also

known as second-order stationarity. If the joint distribution of yt , . . . , yt+h is

time invariant, the process yt is strictly stationary.

In practice, an economic variable being stationary is the exception rather

than the rule. For example, often the raw data have to be transformed prior

19
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20 Vector Autoregressive Models

to the analysis by taking natural logs to stabilize the variance of the variable.

In addition, there are many variables that have trends that have to be removed

or modeled explicitly to ensure stationarity. A trend in a time series variable

is thought of as a systematic upward or downward movement over time. For

example, a variable yt may vary about a linear trend line of the form yt = μ0 +

μ1t + xt , where xt is a zero mean stationary stochastic process. The straight

line, μ0 + μ1t, represents a simple deterministic trend function that captures

the systematic upward or downward movement of many economic variables

reasonably well.

Alternatively, a variable may be viewed as being driven by a stochastic trend.

A simple example of a process with a stochastic trend is the univariate AR(1)

process

yt = ayt−1 + ut

with coefficient a = 1 such that

yt = yt−1 + ut .

This process is called a random walk. Its AR polynomial has a unit root, i.e.,

1 − az = 0 for z = 1.

Its stochastic error ut (also known as the innovation) is assumed to be a white

noise process with mean 0 and variance σ 2
u . In other words, ut and us are uncor-

related for s �= t, E(ut ) = 0, and E(u2
t ) = σ 2

u . Given that yt − yt−1 = ut , it is

easily seen that the effect of a random change in ut on future values of yt is not

reversed in expectation. Thus, the effect of ut on future values of yt is perma-

nent.

Successive substitution for lagged yt variables in the defining equation of

the random walk, yt = yt−1 + ut , yields

yt = y0 +

t
∑

i=1

ui. (2.1.1)

Hence, assuming that the process is defined for t ∈ N, we have

E(yt ) = E(y0) and Var(yt ) = tσ 2
u + Var(y0).

In other words, even though Var(y0) is finite, the variance of a random walk

tends to infinity. Moreover, the correlation

Corr(yt, yt+h) =

E

[(

t
∑

i=1

ui

)(

t+h
∑

i=1

ui

)]

[tσ 2
u (t + h)σ 2

u ]1/2
=

t

(t2 + th)1/2
−→
t→∞

1

(2.1.2)
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2.1 Stationary and Trending Processes 21

for any given integer h. Due to this property, even random variables yt and

ys of the process far apart in time (such that s is much greater than t) are

strongly correlated. This property indicates a strong persistence in the time

series process. In fact, it turns out that the expected time between two crossings

of zero is infinite. Such behaviour is associated with a trend in the data. Clearly,

since ut is stochastic, so is the trend.

A univariate AR(1) process with unit coefficient and a constant term,

yt = ν + yt−1 + ut ,

is called a random walk with drift. Successive substitution of lags of yt shows

that in this case

yt = y0 + tν +

t
∑

i=1

ui

and, hence, the process has a linear trend in the mean:

E(yt ) = E(y0) + tν.

Higher-order AR processes such as

yt = ν + a1yt−1 + · · · + apyt−p + ut ,

where ut is white noise as before, have stochastic trending properties similar to

random walks if the AR polynomial 1 − a1z − · · · − apzp has a root for z = 1.

The AR polynomial can be decomposed as

1 − a1z − · · · − apzp = (1 − λ1z) × · · · × (1 − λpz), (2.1.3)

where λ1, . . . , λp are the reciprocals of the roots of the polynomial. If the pro-

cess has only one unit root or, equivalently, only one of the λi roots is 1 and all

the others are smaller than 1, the process behaves similarly to a random walk in

that it follows a stochastic trend. More precisely, yt can be decomposed into a

random walk and a stationary component such that yt varies about a stochastic

trend generated by its random walk component.

The representation of the AR polynomial shows that the unit root can be

removed by taking first differences of the process. Let �yt ≡ (1 − L)yt ≡ yt −

yt−1, where L is the lag operator such that Lyt ≡ yt−1, and � is the difference

operator such that � ≡ 1 − L and hence �yt = yt − yt−1.

An AR(p) process with AR polynomial satisfying the condition

1 − a1z − · · · − apzp �= 0 ∀z ∈ C, |z| ≤ 1, (2.1.4)

is called stable. Here |z| denotes the modulus of the complex number z. Put

differently, |z| is the distance from the origin of the complex plane. If, in addi-

tion, the mean of the AR process does not change over time deterministically,

as would be the case in the presence of a deterministic time trend, if the error

www.cambridge.org/9781107196575
www.cambridge.org


Cambridge University Press
978-1-107-19657-5 — Structural Vector Autoregressive Analysis
Lutz Kilian , Helmut Lütkepohl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

22 Vector Autoregressive Models

term ut has time-invariant variance σ 2
u , and if its first and second moments are

bounded, then the AR process is stationary. Sometimes in the literature, condi-

tion (2.1.4) is rather imprecisely viewed as a condition ensuring stationarity. Of

course, interpreting (2.1.4) as a stationarity condition implicitly assumes that

there are no other deviations from stationarity such as a linear deterministic

trend in the mean or an innovation variance changing over time.

To ensure finite moments, AR processes with unit roots are assumed to

start at some fixed time period, say t0, if not explicitly stated otherwise. For

example, in the foregoing discussion we have assumed that t0 = 0. In contrast,

stable AR processes without unit roots are typically assumed to have started in

the infinite past to ensure stationarity. Without that assumption they may only

be asymptotically stationary in that the moments are not time-invariant, but

converge to their limit values only for t → ∞.

If the AR polynomial has d ∈ N unit roots and, hence, d of the λi roots

in (2.1.3) are equal to 1, the process in called integrated of order d (I (d )).

In that case, the process can be made stable by differencing it d times. For

example, if d = 1, �yt = yt − yt−1 is stable. If d = 2, �2yt = (1 − L)2yt =

yt − 2yt−1 + yt−2 is stable, and so forth. If d = 2, the original yt must be

differenced twice. For example, if the log price level pt is I (2), then the

inflation rate πt = �pt = pt − pt−1 is I (1), and the change in the infla-

tion rate �πt = πt − πt−1 = pt − pt−1 − (pt−1 − pt−2) = pt − 2pt−1 + pt−2

is I (0). As before, initial values can be chosen such that �dyt = (1 − L)dyt is

stationary, provided the conditions for the mean and for the innovation variance

required for stationarity are satisfied.

Stable, stationary processes are referred to as I (0) processes. Generally, for

d ∈ N, a stochastic process yt is called I (d ), if �dyt ≡ zt is a stationary process

with infinite-order moving average (MA) representation, zt =
∑∞

j=0 θ jut− j =

θ (L)ut , where the MA coefficients satisfy the condition
∑∞

j=0 j|θ j| < ∞,

θ (1) =
∑∞

j=0 θ j �= 0, and ut ∼ (0, σ 2
u ) is white noise. For example, in the

case of an I (1) process, this condition implies that yt = yt−1 + zt has the

representation

yt = y0 + z1 + · · · + zt

= y0 + θ (1)(u1 + · · · + ut ) +

∞
∑

j=0

θ∗
j ut− j − z∗

0, (2.1.5)

where θ∗
j = −

∑∞

i= j+1 θi, j = 0, 1, . . . , and z∗
0 =

∑∞

j=0 θ∗
j u− j contains ini-

tial values. The variable yt is decomposed into the sum of a random walk,

θ (1)(u1 + · · · + ut ), a stationary process,
∑∞

j=0 θ∗
j ut− j, and initial values,

y0 − z∗
0. The decomposition (2.1.5) is known as the Beveridge-Nelson decom-

position (see Beveridge and Nelson 1981).

Of course, our primary interest is in systems of variables. Hence, it is useful

to extend the I (d ) terminology to that setting as well. Accordingly, we call a

vector process yt = (y1t , . . . , yKt )
′ I (d ) if stochastic trends can be removed by
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2.2 Linear VAR Processes 23

differencing yt d times and if differencing d − 1 times is not enough for trend

removal. It is important to note, however, that in systems of variables even if

only one of the variables is I (d ) individually, the whole system is viewed as

I (d ). Moreover, it is possible that a single stochastic trend drives several of

the variables jointly. This is the important case of cointegrated variables to be

discussed in Chapter 3.

The I (d ) terminology has also been extended to non-integer, real num-

bers d. For general d ∈ R the so-called fractional differencing operator �d

is defined as a binomial expansion,

�d = (1 − L)d = 1 − dL −
d(1 − d )

2
L2 −

d(1 − d )(2 − d )

6
L3 − · · ·

=

∞
∑

i=0

(−1)i

(

d

i

)

Li

=

∞
∑

i=0

(−1)i d(d − 1) × · · · × (d − i + 1)

1 × 2 × · · · × i
Li.

The infinite sum reduces to a finite sum for d ∈ N. The process yt is called frac-

tional or fractionally integrated of order d if �dyt = zt is I (0) with MA repre-

sentation zt = θ (L)ut , θ (1) �= 0 (see, e.g., Johansen and Nielsen 2012). Such

processes were introduced to the time series econometrics literature by Granger

and Joyeux (1980) and Hosking (1981b). Fractionally integrated processes are

often referred to as long-memory processes because for d > 0 they are more

persistent and their autocorrelations taper off to zero more slowly than for I (0)

processes. Although fractionally integrated processes are not I (0), they may be

stationary. Stationarity of a fractionally integrated process requires |d| < 0.5.

Integer-valued differences often have a natural interpretation. For exam-

ple, first differences of the logs of a variable represent growth rates. Such an

easy interpretation is lost for fractionally differenced variables. Thus, it is per-

haps not surprising that the concept of fractional integration to date has not

been used much in structural VAR analysis. More importantly, reliable estima-

tion of fractionally integrated processes requires larger samples than typically

available in macroeconomics. Fractional processes therefore do not play an

important role in this volume. In the remainder of this book, when we refer to

I (d ) variables, we always mean non-negative integers d unless explicitly stated

otherwise.

2.2 Linear VAR Processes

2.2.1 The Basic Model

Suppose that the relationship between a set of K time series variables, yt =

(y1t, . . . , yKt )
′, is of interest and that the DGP can be represented as the sum of
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24 Vector Autoregressive Models

a deterministic part μt and a purely stochastic part xt with mean zero such that

yt = μt + xt . (2.2.1)

In other words, the expected value of yt is E(yt ) = μt . The deterministic term

may contain a constant, polynomial trend terms, deterministic seasonal terms,

and other dummy variables. For simplicity, μt is usually assumed to contain

only a constant such that μt = μ0. Occasionally a linear trend of the form

μt = μ0 + μ1t is considered. Generally the additive setup (2.2.1) makes it

necessary to think about the deterministic terms at the beginning of the anal-

ysis and to allow for the appropriate polynomial order. In some applications

trend adjustments are performed prior to a VAR analysis. This approach must

be taken, for example, when the detrending procedure cannot be incorporated

into the VAR specification. An example is the use of HP-filtered data. Further

discussion of these alternative detrending methods can be found in Chapter 19.

In that case there may be no deterministic term in the VAR representation in

levels, i.e., μt = 0 in expression (2.2.1) and yt = xt .

The purely stochastic part, xt , of the DGP is assumed to follow a linear VAR

process of order p (referred to as a VAR(p) model) of the form

xt = A1xt−1 + · · · + Apxt−p + ut , (2.2.2)

where the Ai, i = 1, . . . , p, are K × K parameter matrices and the error pro-

cess ut = (u1t , . . . , uKt )
′ is a K-dimensional zero mean white noise process

with covariance matrix E(utu
′
t ) = �u such that ut ∼ (0, �u). The white noise

assumption rules out serial correlation in the errors but allows for condi-

tional variance dynamics such as generalized autoregressive conditionally het-

eroskedastic (GARCH) errors (see e.g. Chapter 14). Sometimes it is useful to

strengthen this assumption, for example, by postulating independent and iden-

tically distributed (iid) errors or by postulating that ut is a martingale difference

sequence.1

Expression (2.2.2) defines a system of equations. Each model variable in yt

is regressed on its own lags as well as lags of the other model variables up to a

lag order p (see Chapter 1). To economize on notation, it is convenient to define

the matrix polynomial in the lag operator A(L) = IK − A1L − · · · − ApLp and

write the process (2.2.2) as

A(L)xt = ut . (2.2.3)

The observed variables yt inherit the VAR structure of xt . This can be seen

easily by pre-multiplying (2.2.1) by A(L) and considering A(L)yt = A(L)μt +

1 The stochastic process vt is called a martingale sequence if E(vt |vt−1, vt−2, . . . ) = vt−1 ∀t.
Then ut ≡ �vt is called a martingale difference if it has expectation E(ut |vt−1, vt−2, . . . ) = 0
∀t. Unlike an iid white noise process, a white noise process that is a martingale difference
sequence allows for conditional heteroskedasticity.
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2.2 Linear VAR Processes 25

ut . For instance, if the deterministic term is just a constant, i.e., μt = μ0, then

yt = ν + A1yt−1 + · · · + Apyt−p + ut , (2.2.4)

where ν = A(L)μ0 = A(1)μ0 = (IK −
∑p

j=1 A j )μ0. In the terminology of the

literature on simultaneous equations models, model (2.2.4) is a reduced form

because all right-hand side variables are lagged and hence predetermined.

The VAR process xt and, hence, yt is stable if all roots of the determinantal

polynomial of the VAR operator are outside the complex unit circle, i.e.,

det(A(z)) = det(IK − A1z − · · · − Apzp) �= 0 ∀z ∈ C, |z| ≤ 1,

(2.2.5)

where C denotes the set of complex numbers. Under common assumptions

such as a constant mean and white noise innovations with time-invariant covari-

ance matrix, a stable VAR process has time-invariant means, variances, and

covariance structure and hence is stationary, as will be seen in the next subsec-

tion. Thus, condition (2.2.5) generalizes the stability condition (2.1.4) to the

multivariate case.

For later reference we note that the K-dimensional VAR(p) process (2.2.4)

can be written as a pK-dimensional VAR(1) process by stacking p consecutive

yt variables in a pK-dimensional vector, Yt = (y′
t, . . . , y′

t−p+1)′, and noting that

Yt = ν + AYt−1 + Ut, (2.2.6)

where

ν ≡

⎡

⎢

⎢

⎢

⎣

ν

0
...

0

⎤

⎥

⎥

⎥

⎦

K p×1

, A ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0

0 IK 0 0
...

. . .
...

...

0 0 . . . IK 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

K p×K p

, and Ut ≡

⎡

⎢

⎢

⎢

⎣

ut

0
...

0

⎤

⎥

⎥

⎥

⎦

K p×1

.

The matrix A is referred to as the companion matrix of the VAR(p) process.

Using the stability condition (2.2.5), Yt is stable if

det(IK p − Az) �= 0 ∀z ∈ C, |z| ≤ 1, (2.2.7)

which, of course, is equivalent to condition (2.2.5). It is easy to see that this

condition is equivalent to all eigenvalues of A having modulus less than 1,

which provides a convenient tool for assessing the stability of a VAR model

and for computing the autoregressive roots. By construction, the eigenvalues

of A are the reciprocals of the roots of the VAR lag polynomial (2.2.5).
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26 Vector Autoregressive Models

2.2.2 The Moving Average Representation

A stable VAR(p) process yt can be represented as the weighted sum of past and

present innovations. This is easily seen for a VAR(1) process,

yt = ν + A1yt−1 + ut .

Successive substitution implies

yt =

∞
∑

i=0

Ai
1ν +

∞
∑

i=0

Ai
1ut−i = (IK − A1)−1ν +

∞
∑

i=0

Ai
1ut−i.

The sum on the right-hand side of this infinite-order representation exists if the

eigenvalues of A1 are all less than 1 in modulus. Similarly, a representation in

terms of past and present innovations of a VAR(p) model can be obtained via

the corresponding VAR(1) representation, resulting in

yt = A(L)−1ν + A(L)−1ut

= A(1)−1ν +

∞
∑

i=0

JAiJ ′JUt−i

= μ +

∞
∑

i=0


iut−i, (2.2.8)

where J ≡ [IK, 0K×K(p−1)] is a K × K p matrix, μ = A(1)−1ν and the K × K

coefficient matrices of the inverse VAR operator A(L)−1 =
∑∞

i=0 
iL
i are

equal to 
i = JAiJ ′, i = 0, 1, . . . . These matrices can also be obtained recur-

sively as


0 = IK, and 
i =

i
∑

j=1


i− jA j, i = 1, 2, . . . ,

with A j = 0 for j > p (see Lütkepohl 2005, chapter 2).

The existence of the inverse VAR operator is ensured by the stability of

the process. The representation (2.2.8) is known as the moving average (MA)

representation or more precisely the Wold MA representation or the prediction

error MA representation. This qualifier is important because there are infinitely

many MA representations of yt . In fact, any nonsingular linear transformation

of the white noise process ut , say vt = Qut , gives rise to a white noise process

and can be used for an MA representation of yt ,

yt = μ +

∞
∑

i=0

�ivt−i, (2.2.9)

with �i = 
iQ
−1, i = 0, 1, . . . . A distinguishing feature of the Wold MA

representation is that the weighting matrix 
0 of the unlagged error term
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2.2 Linear VAR Processes 27

is the identity matrix, while �0 is not an identity matrix for nontrivial

transformations.

It follows immediately from the Wold MA representation that

E(yt ) = μ

and that

Ŵy(h) ≡ Cov(yt , yt−h) = E[(yt − μ)(yt−h − μ)′] =

∞
∑

i=0


h+i�u

′
i.

(2.2.10)

Hence, the first and second moments of this VAR process are time invariant

and the process is stationary (see Lütkepohl 2005, chapter 2).

2.2.3 VAR Models as an Approximation to VARMA Processes

An important result in this context is due to Wold (1938) who showed that

every K-dimensional nondeterministic zero mean stationary process yt has an

MA representation

yt =

∞
∑

i=0


iut−i, (2.2.11)

where 
0 = IK . This result follows from the Wold Decomposition Theorem

and motivates the terminology used for the MA representation (2.2.8). This

result is important because it illustrates the generality of the VAR model.

Suppose the 
i are absolutely summable and that there exists an operator

A(L) with absolutely summable coefficient matrices satisfying A(L)
(L) = IK .

Then 
(L) is invertible [A(L) = 
(L)−1] and yt has a VAR representation of

possibly infinite order that can be approximated arbitrarily well by a finite-

order VAR(p) if p is sufficiently large.

In particular, under suitable conditions, a VAR(p) process may be used to

approximate time series generated from vector autoregressive moving average

(VARMA) models of the form

yt = ν + A1yt−1 + · · · + Ap0
yt−p0

+ ut + M1ut−1 + · · · + Mq0
ut−q0

,

where p0 and q0 denote the true autoregressive and moving average lag orders,

provided the VAR lag order p is sufficiently large. If the VAR operator A(z) =

IK − A1z − · · · − Ap0
zp0 of the VARMA process satisfies the stability condition

(2.2.5) and, thus, the VAR operator has no roots in or on the complex unit

circle, the VARMA process has a possibly infinite-order MA representation

(2.2.11).
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28 Vector Autoregressive Models

Moreover, if the determinant of the MA operator of the VARMA process

has all its roots outside the unit circle, i.e.,

det(M (z)) = det(IK + M1z + · · · + Mq0
zq0 ) �= 0 ∀z ∈ C, |z| ≤ 1,

the process also has an equivalent pure VAR representation of possibly infinite

order.2 Unlike in the univariate case, the inverse of a finite-order operator may

also be a finite-order operator in the multivariate case. In other words, M (z)−1

may be a finite order operator if M (z) has finite order. Hence, it is possible in

the multivariate case that a finite-order MA process has an equivalent finite-

order VAR representation and vice versa.

A detailed introductory exposition of VARMA processes is provided by

Lütkepohl (2005), and a more advanced treatment can be found in Hannan and

Deistler (1988). Since VARMA processes are much more difficult to deal with

in practice, we focus on VAR models in the remainder of this book.

If the VAR process of interest has a unit root and, hence, the stabil-

ity condition is not satisfied, the infinite-order MA representation (2.2.8)

does not exist. However, we can still think of the process as starting from

Y0 = (y′
0, . . . , y′

−p+1)′ and obtain a representation

yt = μt +

t−1
∑

i=0


iut−i + JAiY0

by successive substitution. For some purposes this representation is useful, but

not for all. In particular, it obscures the long-run properties of the process.

These are more easily understood using the so-called Granger representation

discussed in Chapter 3.

2.2.4 Marginal Processes, Measurement Errors, Aggregation, Variable

Transformations

The reduced-form MA representation is also a good point of departure for

studying the implications of dropping variables from a VAR process. Consider

a bivariate stationary process for two variables,

yt =

(

y1t

y2t

)

=

(

μ1

μ2

)

+

[

φ11(L) φ12(L)

φ21(L) φ22(L)

] (

u1t

u2t

)

. (2.2.12)

Thus, the first variable has the representation

y1t = μ1 + φ11(L)u1t + φ12(L)u2t

2 An MA representation with MA operator satisfying this invertibility condition is sometimes
called a fundamental MA representation. In Chapter 17 we discuss nonfundamental MA repre-
sentations that have roots inside the complex unit circle and, hence, do not satisfy the invertibility
condition for the MA operator.
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2.2 Linear VAR Processes 29

in terms of both innovation series. According to Wold’s decomposition

theorem, it also has an MA representation in terms of a scalar white noise

process, vt :

y1t = μ1 +

∞
∑

i=0

ψivt−i.

This MA represents the marginal process of y1t that is obtained by integrating

out the second variable. If φ12(L) �= 0, then vt �= u1t and ψi �= φ11,i in general.

These facts are important to keep in mind for the analysis of impulse responses

in Chapter 4. The point to remember is that, in general, dropping some vari-

ables from a multivariate time series process results in a lower-dimensional

process with possibly quite different MA coefficients than the process for the

original set of variables.

More generally, any transformation of the variables implies changes in the

MA coefficients. Consider, for example, a nonsingular transformation matrix

F and a transformed process

zt = Fyt = Fμ +

∞
∑

i=0

F
iF
−1Fut−i = μz +

∞
∑

i=0

�ivt−i, (2.2.13)

where �i = F
iF
−1 and vt = Fut . Obviously, such transformations change

the MA coefficient matrices and white noise error term, and therefore also

affect the lag order of the approximating autoregressive process. The same

result also holds when F is not a square matrix. Suppose F is an M × K

matrix of rank M . Then one may add K − M rows to the matrix such that it

becomes nonsingular, consider the resulting nonsingular transformation, and

finally omit the last K − M components of the transformed vector.

In short, linear transformations of a VAR process have MA representations

quite different from that of the original process, but both representations are

equally valid. For example, a researcher may be working with a VAR for the

interest rate, inflation rate, and real GDP growth. These variables could alter-

natively be represented as autoregressive-moving average (ARMA) processes

for each series separately, which in turn can be approximated by finite-order

AR models. Linear transformations are also quite common when aggregat-

ing data across households and industries to form macroeconomic aggregates.

Likewise, problems of temporal aggregation fall within this framework (see

Lütkepohl 2005, chapter 11). For example, it is common to aggregate monthly

inflation to quarterly inflation data, which involves taking a linear combination

of monthly inflation rates.

In this context it is important to stress that different types of variables

require different temporal aggregation methods. For flow variables such as

GDP or industrial production, temporal aggregation to a lower frequency

www.cambridge.org/9781107196575
www.cambridge.org


Cambridge University Press
978-1-107-19657-5 — Structural Vector Autoregressive Analysis
Lutz Kilian , Helmut Lütkepohl 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

30 Vector Autoregressive Models

involves accumulating the high-frequency observations over time. For exam-

ple, quarterly industrial production is obtained by summing the monthly indus-

trial production that has taken place within each quarter. In contrast, stock

variables such as the number of unemployed workers or the population of a

region are aggregated from monthly data to quarterly frequency by using, for

example, the last monthly value of each quarter as the quarterly value and drop-

ping the other monthly observations. In other words, temporal aggregation is

performed by what is known as skip-sampling or systematic sampling. Alter-

natively, one may use the average of the monthly values as a quarterly value,

depending on the economic context. The important point to note here is that

different temporal aggregation schemes imply different changes in the DGP

and hence in the MA representation of the variables. There is an extensive lit-

erature discussing these issues, in particular in the forecasting context. Early

contributions include Tiao (1972), Amemiya and Wu (1972), Brewer (1973),

Abraham (1982), and Wei (1981). A more recent systematic account of this

literature is provided in Lütkepohl (1987). An alternative approach has been to

combine time series observed at different frequencies within the same econo-

metric model (see Foroni, Ghysels, and Marcellino 2013). Related issues in the

context of structural modeling are taken up in Chapter 15.

Another example of a linear aggregation problem is additive measurement

error in the data. Suppose that the variable of interest, say y∗
t , is measured with

error and denote the measurement error by mt such that the observed process is

yt = y∗
t + mt . In other words, yt is a linear transformation of the joint process

(

y∗
t

mt

)

.

Then, assuming that the joint process is stationary, the previous discussion

implies that the MA representation of yt differs from that of y∗
t .

These considerations demonstrate that even linear transformations can

have a substantial impact on the MA representation of a stationary process.

Although these issues do not invalidate the reduced-form representation of

VAR models, they may affect the structural interpretation and identification

of VAR models, as discussed in later chapters. Our discussion in this section

has been based on the MA representation and, hence, applies to stationary pro-

cesses more generally. We now return to finite-order VAR processes and dis-

cuss parameter estimation within that model class.

2.3 Estimation of VAR Models

VAR models can be estimated by standard methods. Unrestricted least-squares

(LS), generalized least-squares (GLS), bias-corrected least-squares, and maxi-

mum likelihood (ML) methods are discussed in Sections 2.3.1–2.3.4. Our main

focus in this chapter is on stationary VAR processes. The properties of LS and
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