
Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

CHAPTER ONE

The Main Themes: Approximate
Decision and Sublinear Complexity

Summary: In this chapter, we introduce, discuss, and illustrate the

conceptual framework of property testing, emphasizing the themes

of approximate decision and sublinear complexity. In particular, we

discuss the key role of representation, point out the focus on properties

that are not fully symmetric, present the definitions of (standard) testers

and of proximity-oblivious testers (POTs), and make some general

observations regarding POTs, testing, and learning. To begin, we con-

sider the potential benefits of testing (i.e., approximate decisions of

sublinear complexity).

Section 1.1 provides a very brief introduction to property testing, sketching its basic

definition and providing an overview of its flavor and potential benefits. The pace here is

fast and sketchy, unlike that in the rest of this chapter. The technical material is presented

in Sections 1.2 and 1.3, which constitutes the main part of this chapter. A more detailed

account of the organization of this part is provided in Section 1.1.4.

1.1. Introduction

Big data is a broad term for data sets so large or complex that traditional

data processing applications are inadequate.

Wikipedia entry on Big Data, February 17, 2016

Everyone talks of big data. Of course, the issue is making good use of large amounts of

data, which requires analyzing it. But such an analysis may mean various things. At one

extreme, it may mean locating tiny and possibly rare (but valuable) pieces of informa-

tion. At the other extreme, it may means detecting global structures or estimating global

parameters of the data as a whole.

It is the latter meaning that applies to the field of property testing. This field is

concerned with the analysis of global features of the data, such as determining whether

the data as a whole have some global property or estimating some global parameter of

their structure. The focus is on properties and parameters that go beyond simple statistics

that refer to the frequency of the occurrence of various local patterns. This is not to

suggest that such simple statistics are not of value, but rather that not everything of

interest can be reduced to them.

In general, the data are a set of records (or items) that may be interrelated in various

ways. The contents and meaning of the data may be reflected not only in the individual

1

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

THE MAIN THEMES: APPROXIMATE DECISION AND SUBLINEAR COMPLEXITY

items (or records), but also in the relations between them. In such a case, important

aspects of the data are reflected in the structural relations between their items. In partic-

ular, the indication of which pairs of items are related may be such an aspect, and it can

be modeled as a graph. Needless to say, this captures only one aspect of the data, but this

aspect could be very significant. When such a model is used, checking whether the graph

that arises has certain structural properties is of natural interest. Indeed, testing natural

properties of huge graphs or estimating various parameters of such graphs is part of the

agenda of property testing. More generally, property testing is concerned with testing

structural properties of huge objects or estimating such structural parameters.

Important as it is, big data is not the only source of huge objects that are considered

by property testing. Other types of huge objects are the functions that are computed by

various programs or other computing devices. We stress that these objects do not appear

in explicit form in reality; they are merely defined implicitly (and concisely) by these

devices.

Our repeated reference to the huge size of the objects is meant to emphasize a salient

feature of property testing. We refer to the fact that property testing seeks superfast

algorithms that refrain from obtaining the full explicit description of the object. These

algorithms inspect relatively small portions of the object and pass judgment based on

such an inspection.

The reader may wonder how it is possible to say anything meaningful about an object

without looking at all of it. On further thought, however, one may note that we are aware

of such cases: All frequency statistics are of this form. It is worthwhile to highlight two

features of these statistics: They are approximate rather than exact, and they are generated

based on random choices. Indeed, a notion of approximation and the use of randomness

are pivotal to property testing. (Yet, we stress again that property testing goes beyond

frequency statistics.)

1.1.1. Property Testing at a Glance

As will be detailed in this chapter, property testing is primarily concerned with superfact

approximate decisions, where the task is distinguishing between objects having a prede-

termined property and objects that are “far” from having this property. Related tasks such

as estimating structural parameters of such objects or finding certain huge substructures

inside them are also addressed. In all cases, the algorithms sought are of sublinear com-

plexity (i.e., complexity that is sublinear in the size of the object), and in particular they

inspect only relatively small portions of the object.

Typically, objects are modeled by functions, and distance between functions is mea-

sured as the fraction of the domain on which the functions differ. An object is considered

far from having the property if its distance from any object that has the property exceeds

a given proximity parameter. We consider (randomized) algorithms that may query the

function at arguments of their choice, where this modeling allows for discussing algo-

rithms that inspect only part of their input. In fact, our focus is on such algorithms, which

make approximate decisions regarding their input (i.e., whether it has some property or

is far from having it).

Cases in which such superfact approximate decisions are possible include testing

properties of functions such as being a low-degree polynomial, being monotone, and

depending on a specified number of attributes; testing properties of graphs such as being

2

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1. INTRODUCTION

bipartite and triangle-free; and testing properties of visual images or geometric objects

such as being well-clustered and being a convex body.

In the next section, we review the potential benefits of property testers. But before

doing so, we wish to stress that, as with any theoretical research, the value of research

in property testing is not confined to the actual use of the suggested algorithms (i.e., the

resulting testers). The development and study of conceptual frameworks, let alone

the development of algorithmic design and analysis techniques, is more important for

the theory of computation at large as well as for computer practice. Although the impact

on practice is typically hard to trace, the relations between property testing and the rest

of the theory of computing are evident (and will be pointed out in relevant parts of this

book).

1.1.2. On the Potential Benefits of Property Testers

Property testing is associated with approximate decision algorithms that run in sublin-

ear time or at least make a sublinear number of queries to their input. The benefit of

sublinear complexity is significant when the input is huge, but this benefit comes at the

cost of having an approximate decision rather than an exact one. The question addressed

in this section is whether (or rather when can) this trading of accuracy for efficiency be

worthwhile. The answer is application dependent rather than universal: We discuss several

different general settings in which such a trade-off is worthwhile.

It is infeasible to recover the object fully. This may be the case either because linear

time is infeasible for the huge objects being considered in the application or because

probes to the object are too expensive to allow inspecting all of it. In such settings, there

is no choice but to use algorithms of sublinear query complexity and settle for whatever

they can provide (of course, the more, the better).

Objects either have the property or are far from having it. Here we refer to applica-

tions in which we know a priori that the objects that we will encounter either have the

property or are far from any object having the property. Intuitively, in such a case, objects

are either perfect (i.e., have the property) or are very bad (i.e., far from it). In this case,

we should not care about inputs that are neither in the set nor far from it, because such

inputs correspond to objects that we are unlikely to encounter.

Objects that are close to having the property are good enough. Here we refer to appli-

cations in which the utility of objects that are close to having the property is almost as

valuable as the utility of objects that have the property. Alternatively, it may be possible to

modify the object at a cost related to its distance from having the property. In such cases,

we may not care too much about ruling that the object has the property whereas in reality

the object is only close to having this property.1

Testing as a preliminary step before deciding. Here we refer to the possibility of using

the approximate decision procedure as a preliminary step, and using the more costly

exact decision procedure only if the preliminary step was completed successfully (i.e.,

1
Advanced comment: One may argue that in such cases, “tolerant testing” (see Section 1.3.2) is even more

adequate. Yet, tolerant testing may be harder than standard testing (cf. [109]).

3

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

THE MAIN THEMES: APPROXIMATE DECISION AND SUBLINEAR COMPLEXITY

the approximate decider accepted the input). This is advantageous provided that objects

that are far from having the property are not very rare, since we definitely save resources

when rejecting such objects based on the preliminary step.

Testing as a preliminary step before reconstructing. This refers to settings in which

we wish to recover the object fully, either by reading all of it or by running a learning

algorithm, but we wish to do so only if the object has the property. Hence, before invoking

the reconstruction procedure, we want to (approximately) decide whether the object has

the property. (In the case of reconstruction by a learning algorithm, this makes sense

only if the approximate decision procedure is more efficient than the learning algorithm.)

Again, using the approximate decision procedure is advantageous provided that objects

that are far from having the property are not very rare.

1.1.3. On the Flavor of Property Testing Research

Property testing seems to stand between algorithmic research and complexity theory.

While the field’s primary goal is the design of certain type of algorithms (i.e., ones of sub-

linear complexity) for certain type of problems (i.e., approximate decision), it often needs

to determine the limits of such algorithms, which is a question of lower bounds (having

a complexity theoretic flavor). Furthermore, historically, property testing was associated

with the study of Probabilistically Checkable Proofs (PCPs), and some connections do

exist between the two areas, but property testing is not confined to PCPs (and/or to the

study of “locally testable codes” [see Chapter 13]).

In addition to standing in between algorithmic research and complexity theory, the

results of property testing have a flavor that makes them different from the mainstream

results in both areas. Its positive results are not perceived as mainstream algorithmic

research and its negative results are not perceived as mainstream complexity theory. In

both cases, the specific flavor of property testing (i.e., approximate decision) makes its

results stand out. But property testing is not the only research area that has this fate: The

same can be said of machine learning and distributed computing, to mention just two

examples.

One additional characteristic of property testing is that its positive results tend to be

established by simple algorithms that are supported by a complex analysis. The simplic-

ity of these algorithms has met a lack of respect among a few researchers, but this is a

fundamental mistake on their part. The simplicity of algorithms is a virtue if one really

considers using them, whereas the complexity of their analysis has no cost in terms of

their applicability. Hence, simple algorithms that require a complex analysis are actually

the greatest achievement that algorithmic research could hope for.

Like algorithmic research, property testing tends to split according to the “area” of the

property and the “type” of objects being considered (i.e., the natural perception of the

object). Indeed, the organization of the current book reflects this split, where Chapters 2–

6 focus on (objects that are viewed as) functions and Chapters 8–10 focus on (objects that

are viewed as) graphs. Furthermore, within the world of functions, one may distinguish

types corresponding to the structure of the domain on which the function is defined (e.g.,

a group, a vector space, or a Boolean hypercube). The structure of the domain is often

reflected by the invariances that are satisfied by the properties that one considers (e.g.,

affine invariance, closure under graph isomorphism, etc.). Still, conceptual frameworks,

4

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1. INTRODUCTION

techniques, ideas, and inspiration do cross the borders between the parts of the foregoing

splits.

Property testing has a clear potential for practical applications, although it seems not

to have materialized so far. The most begging applications are to the practice in areas

such as machine learning, compressed sensing, computer vision, statistics, and privacy

preserving data analysis. To provide some illustration to this potential, we mention the

experimental search-and-cluster engine [77], which is based on [177], which in turn

uses [123, 98], which are informed by [121, 140]. (Indeed, a nondirect line of influence

should be expected in the transportation of theoretical research to practice.) Applica-

tions that are more directly inspired by [140] are reported in [209, 163]. We also mention

the connection between the study of testing visual images [230, 243] and finding matches

between images [193, 194]. Lastly, we mention that research in the somewhat related area

of “streaming algorithms” [15] has witnessed more interaction with practice (including

computer networks and databases [213], compressed sensing (e.g., [80]), and numerical

linear algebra [270]).

1.1.4. Organization and Some Notations

As stated previously, we view property testing as concerned primarily with approximate

decisions, a notion discussed in Section 1.2.2. (For perspective, we recall in Section 1.2.1

the notion of approximate search problems.) Next, in Section 1.2.3, we discuss the second

key feature of property testing – its focus on sublinear complexity. Then, in Section 1.2.4,

we highlight yet another feature of property testing – its focus on properties that are not

fully symmetric (i.e., are not invariant under arbitrary reordering of the sequence of values

that represent the object). In general, the relation between objects and their representation

is crucial in the context of property testing, and this issue is discussed in Section 1.2.5.

The core of this chapter is presented in Section 1.3. The basic notions, definitions,

and goals of property testing are presented in Section 1.3.1 and used extensively through-

out the entire book (with very few exceptions). In contrast, the ramifications discussed

in Section 1.3.2 are used lightly (if at all), and ditto for the general observations made

in Sections 1.3.4 and 1.3.5 (which refer to the “algebra of property testing” and to the

testing-by-learning connection, respectively). In Section 1.3.3, we present another notion

that is used extensively – that of a proximity-oblivious tester (POT).

Historical perspectives, suggestions for further reading, and exercises are provided in

Sections 1.4 and 1.5. Finally, in Section 1.6 we reiterate some of issues discussed in the

current chapter, in light of their importance to the rest of the book.

Some Notation. We shall be using the following standard notations:

� For n * N, we let [n]
def
= {1, . . . , n}.

� For x * {0, 1}7, we let |x| denote the length of x and let xi denote the ith bit of x; that is,

if n = |x|, then x = x1 · · · xn such that xi * {0, 1} for every i * [n].
� The Hamming weight of a string x, denoted wt(x), is the number of locations that hold

the value one; that is,

wt(x) = |{i * [|x|] : xi = 1}| =

|x|
�

i=1

xi.

5

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

THE MAIN THEMES: APPROXIMATE DECISION AND SUBLINEAR COMPLEXITY

Teaching Note: Section 1.2 provides a paced presentation of the mindframe that underlies

property testing, illustrating key issues such as approximate decision and sublinear complex-

ity. In case of time constraints, one can skip this section and go directly to Sections 1.3.1

and 1.3.3. Still, we recommend taking the slower pace and covering also Sections 1.3.4

and 1.3.5, although this may mean spending more than a single lecture on the current chapter.

The ramifications discussed in Section 1.3.2 are discussed in greater detail in Chapter 12, but

we believe that an early detour into these variants provides a good perspective on the main

definition presented in Section 1.3.1 (while acknowledging that this may be too much for

some readers).

1.2. Approximate Decisions

The notion of approximation is well known in the context of optimization problems,

which are a special type of search problems. We start by recalling these notions, for the

purpose of providing a wide perspective.

1.2.1. A Detour: Approximate Search Problems

Recall that search problems are defined in terms of binary relations, and consist of finding

a “valid solution” y to a given instance x, where y is a valid solution to x if (x, y) satisfies

the binary relation associated with the problem. Letting R ¦ {0, 1}7 × {0, 1}7 denote such

a relation, we say that y is a solution to x if (x, y) * R, and the set of solutions for the

instance x is denoted R(x)
def
= {y : (x, y) * R}. Hence, given x, the task is to find y * R(x),

provided that R(x) �= '. (The computation of a function corresponds to the special case

in which all these sets are singletons.)

In optimization problems, the valid solutions are assigned a value (or a cost), cap-

tured by a function ¿ : {0, 1}7 ³ R, and one is asked to find a solution of maximum

value (resp., minimum cost); that is, given x, the task is to find y * R(x) such that

¿(y) = maxz*R(x){¿(z)} (resp., ¿(y) = minz*R(x){¿(z)}).2

A corresponding approximation problem is defined as finding a solution having value

(resp., cost) close to the optimum; that is, given x the task is to find y * R(x) such that

¿(y) is “close” to maxz*R(x){¿(z)} (resp., to minz*R(x){¿(z)}). One may also talk about the

estimation problem, in which the task is to approximate the value of the optimal solution

(rather than actually finding a solution that obtains that value).

The point we wish to make here is that, once a function ¿ and a proximity parameter

are fixed, it is clear what one means by seeking an approximation solution for a search

problem. But, what do we mean when we talk about approximate decision problems?

1.2.2. Property Testing: Approximate Decision Problems

Indeed, what can an approximate decision problem possibly mean?

Unfortunately, there is no decisive answer to such questions; one can only propose

an answer and articulate its natural appeal. Indeed, we believe that a natural notion of

2
Advanced comment: Greater flexibility is achieved by allowing the value (resp., cost) to depend also on the

instance; that is, use ¿(x, y) rather than ¿(y). Actually, this does not buy any additional generality, because we can

always augment the solution y by the instance x and use ¿�(�y, x�) = ¿(x, y). On the other hand, using the more flexible

formulation, one can get rid of the relation R by letting ¿(x, y) = 2> (resp., ¿(x, y) = >) if (x, y) �* R.

6

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2. APPROXIMATE DECISIONS

approximate decision (or a natural relaxation of the decision problem) is obtained by

ignoring “borderline” cases, which are captured by inputs that are close to the set but do

not reside in it. That is, instead of asking whether an input x is in the set S, we consider

the problem of distinguishing between the case that x * S and that of x being “far” from

S. Hence, we consider a promise problem (cf. [105, 129] or [131, Sec. 2.4.1]), in which

the -instances are the elements of S and the -instances are “far” from S.

Of course, we need to clarify what “far” means. To this end, we fix a metric, which

will be the (relative) Hamming distance, and introduce a proximity parameter, denoted �.

Specifically, letting ·(x, z) = |{i * [|x|] : xi �= zi}|/|x| if |x| = |z| and ·(x, z) = > other-

wise, we define the distance of x * {0, 1}7 from S as ·S (x)
def
= minz*S{·(x, z)}. Now, for

a fixed value of � > 0, the foregoing promise problem consists of distinguishing S from

{x : ·S (x) > �}, which means that inputs in {x : 0 < ·S (x) f �} are ignored.

Notation. Throughout the text, unless explicitly said differently, � will denote a proxim-

ity parameter, which determines what is considered far. We shall say that x is �-far from

S if ·S (x) > �, and otherwise (i.e., when ·S (x) f �) we shall say that x is �-close to S.

Recall that ·S (x) denotes the relative Hamming distance of x from S; that is, ·S (x) is the

minimum, taken over all z * S + {0, 1}|x|, of |{i * [|x|] : xi �= zi}|/|x|.

Lastly, we note that the set S will be associated with the property of being in it, which

for simplicity will also be referred to as the property S. Approximate decision will be later

called property testing; that is, approximate decision for a set S corresponds to testing the

property S.

1.2.3. Property Testing: Sublinear Complexity

But why did we relax standard decision problems into approximate decision problems?

The answer is that, as in the case of approximate search problems, this is done in order to

allow for more efficient algorithms.

This answer is clear enough when the best known (or best possible) decision procedure

requires more than linear time, let alone when the original decision problem is NP-Hard.

But property testing deals also with properties that have linear-time algorithms. In these

cases as well as in the former cases, the relaxation to approximate decision suggests

the possibility of sublinear-time algorithms, that is, algorithms that do not even read

their entire input. Such algorithms are particularly beneficial when the input is huge (see

Section 1.1.2).

The latter suggestion requires a clarification. Talking about algorithms that do not read

their entire input calls for a model of computation in which the algorithms have direct

access to bits of the input. Unlike in complexity theory, such a model is quite common

in algorithmic research: It is the standard RAM model. (For sake of abstraction, we will

actually prefer to use the model of oracle machines, while viewing the oracle as the input

device.)

Except in degenerate cases (in which the decision problem is essentially insensitive to

almost all the bits in the input), the relaxation to an approximate decision seems necessary

to avoid the reading of the entire input. For example, if S is the set of strings having even

parity, then an exact decision procedure must read all the bits of the input (since flipping a

single bit will change the decision), but the approximate decision problem is trivial (since

each n-bit string is 1/n-close to S). A more interesting case is presented next.

7

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

THE MAIN THEMES: APPROXIMATE DECISION AND SUBLINEAR COMPLEXITY

The Case of Majority. Let MAJ = {x :
�|x|

i=1 xi > |x|/2}. We shall show that the corre-

sponding approximate decision problem can be solved by a (randomized) poly(1/�)-time

algorithm (see Proposition 1.1), whereas no sublinear-time (randomized) algorithm can

solve the corresponding (exact) decision problem (see Proposition 1.2). We shall also

show that randomness is essential for the positive result (see Proposition 1.3).

Proposition 1.1 (A fast approximate decision procedure for MAJ): There exists a

randomized O(1/�2)-time algorithm that decides whether x is in MAJ or is �-far

from MAJ.

As usual in the context of randomized algorithms, deciding means outputting the correct

answer with probability at least 2/3.

Proof: The algorithm queries the input x at m = O(1/�2) uniformly and inde-

pendently distributed locations, denoted i1, . . . , im, and accepts if and only if the

average value of these bits (i.e.,
�

j*[m] xi j
/m) exceeds (1 2 �)/2. In the analysis,

we use the Chernoff Bound (or alternatively Chebyshev’s Inequality),3 which

implies that, with probability at least 2/3, the average of the sample is within �/2

of the actual average; that is,

Pri1,...,im*[|x|]

�
�

�

�

�

�

�

j*[m] xi j

m
2

�|x|
i=1 xi

|x|

�

�

�

�

�

f �/2

�

g 2/3. (1.1)

We stress that Eq. (1.1) holds since m = "(1/�2). It follows that the algo-

rithm accepts each x * MAJ with probability at least 2/3, since in this case
�|x|

i=1 xi > |x|/2. Likewise, it rejects each x that is �-far from MAJ with probability

at least 2/3, since in this case
�|x|

i=1 xi f (0.5 2 �) · |x|.

Teaching Note: We assume that the reader is comfortable with the assertion captured by

Eq. (1.1); that is, the reader should find Exercise 1.1 easy to solve. If this is not the case,

then we advise the reader to become comfortable with such assertions and arguments before

continuing reading. Appendix A should suffice for readers who have basic familiarity with

probability theory. Likewise, we assume that the reader is comfortable with the notion of a

randomized algorithm; basic familiarity based on [131, Sec. 6.1] or any part of [212] should

suffice.

Proposition 1.2 (Lower bound on decision procedures for MAJ): Any randomized

algorithm that exactly decides membership in MAJ must make "(n) queries, where

n is the length of the input.

Teaching Note: The following proof may be harder to follow than all other proofs in this

chapter, with the exception of the proof of Proposition 1.11, which is also a lower bound.

Some readers may prefer to skip these proofs at the current time, and return to them at a later

time (e.g., after reading Chapter 7). We prefer to keep the proofs in place, but warn readers

not to stall at them.

3
Advanced comment: Indeed, both inequalities are essentially equivalent when one seeks constant error proba-

bility. See discussion in Appendix A.4.

8

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2. APPROXIMATE DECISIONS

Proof: For every n * N, we consider two probability distributions: A distribu-

tion Xn that is uniform over n-bit strings having Hamming weight �n/2� + 1,

and a distribution Zn that is uniform over n-bit strings having Hamming weight

�n/2�. Hence, Pr[Xn * MAJ] = 1 and Pr[Zn * MAJ] = 0. However, as shown in

Claim 1.2.1, a randomized algorithm that queries either Xn or Zn at o(n) locations

cannot distinguish these two cases with a probabilistic gap that exceeds o(1), and

hence must be wrong in one of the two cases.

(Note that the randomized decision procedure must be correct on each input. The

proof technique employed here proceeds by showing that any “low-complexity”

procedure fails even in the potentially simpler task of distinguishing between

some distribution of -instances and some distribution of -instances. Failing

to distinguish these two distributions implies that the procedure errs with too

large probability on at least one of these two distributions, which in turn implies

that there exists at least one input on which the procedure errs with too large

probability.)

Claim 1.2.1 (Indistinguishability claim): Let A be an algorithm that queries its

n-bit long input at q locations. Then, |Pr[A(Xn) = 1] 2 Pr[A(Zn) = 1]| f q/n.

We stress that the claim holds even if the algorithm is randomized and selects its

queries adaptively (based on answers to prior queries).

Proof: It is instructive to view Xn as generated by the following random process:

First i * [n] is selected uniformly, then y * {0, 1}n is selected uniformly among the

strings of Hamming weight �n/2� that have 0 in position i, and finally Xn is set

to y · 0i2110n2i. Likewise, Zn is generated by letting Zn ± y. (This is indeed a

complicated way to present these random variables, but it greatly facilitates the

following analysis.)4 Now, observe that, as long as A does not query location i,

it behaves in exactly the same way on Xn and Zn, since in both cases it effec-

tively queries the same random y. (Furthermore, conditioned on not having queried

i so far, the distribution of i is uniform over all unqueried locations.) The claim

follows.

By the indistinguishability claim (Claim 1.2.1), if algorithm A queries its n-bit

long input on less than n/3 locations, then |Pr[A(Xn) = 1] 2 Pr[A(Zn) = 1]| <

1/3. Hence, either Pr[A(Xn) = 1] < 2/3, which implies that A errs (w.p. greater

than 1/3) on some x * MAJ, or Pr[A(Zn) = 1] > 1/3, which implies that A errs

(w.p. greater than 1/3) on some z �* MAJ. The proposition follows.

Proposition 1.3 (Randomization is essential for Proposition 1.1): Any deterministic

algorithm that distinguishes between inputs in MAJ and inputs that are 0.5-far from

MAJ must make at least n/2 queries, where n is the length of the input.

Proof: Fixing an arbitrary deterministic algorithm A that makes q < n/2 queries,

we shall show that if A accepts each input in MAJ, then it also accepts the all-zero

4
See Exercise 1.2 for details regarding the equivalence of the alternative and original definitions of Xn (resp.,

of Zn).

9

www.cambridge.org/9781107194052
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-19405-2 — Introduction to Property Testing
Oded Goldreich
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

THE MAIN THEMES: APPROXIMATE DECISION AND SUBLINEAR COMPLEXITY

string, which is 0.5-far from MAJ. It will follow that A fails to distinguish between

some inputs in MAJ and some inputs that are 0.5-far from MAJ.

Relying on the hypothesis that A is deterministic, we consider the unique

execution of A in which all queries of A are answered with 0, and denote the set

of queried locations by Q. We now consider two different n-bit long strings that

are consistent with these answers. The first string, denoted x, is defined such that

x j = 1 if and only if j �* Q, and the second string is z = 0n. Note that x * MAJ

(since wt(x) = n 2 q > n/2), whereas z is 0.5-far from MAJ. However, A behaves

identically on x and z, since in both cases it obtains the answer 0 to each of its

queries, which means that A(x) = 1 if and only if A(z) = 1. Hence, A errs either

on x (which is in MAJ) or on z (which is 0.5-far from MAJ). The proposition

follows.

Digest. We have seen that sublinear time (in fact constant-time) algorithms for approxi-

mate decision problems exist in cases in which exact decision requires linear time. The

benefit of the former is significant when the input is huge, although this benefit comes at

the cost of having an approximate decision rather than an exact one (and using random-

ized algorithms rather than deterministic ones).

1.2.4. Symmetries and Invariants

The proof of Proposition 1.1 reflects the well-known practice of using sampling in order

to estimate the average value of a function defined over a huge population. The same

practice applies to any problem that refers to the statistics of binary values, while totally

ignoring the identity of the entities to which these values are assigned. In other words,

this refers to symmetric properties (of binary sequences), which are defined as sets S such

that for every x * {0, 1}7 and every permutation Ã over [|x|] it holds that x * S if and only

if xÃ (1) · · · xÃ (|x|) * S.

Theorem 1.4 (Testing symmetric properties of binary sequences): For every sym-

metric property (of binary sequences), S, there exists a randomized algorithm that

makes O(1/�2) queries and decides whether x is in S or is �-far from S.

(The result can be generalized to symmetric properties of sequences over any fixed alpha-

bet.5 The result does not generalize to sequences over unbounded alphabet. In fact, there

exist symmetric properties over unbounded alphabet for which the approximate decision

problem requires a linear number of queries (see Exercise 1.3).)

Proof: The key observation is for every n there exists a set (of weights) Wn ¦

{0, 1, . . . , n} such that for every x * {0, 1}n it holds that x * S if and only if

wt(x) * Wn, where wt(x) = |{i * [n] : xi �= 0}|. (In the case of MAJ, the set Wn is

5
Advanced comment: When generalizing the result to the alphabet � = {0, 1, .., t}, consider the set (of

“frequency patterns”) Fn ¦ ({0, 1, . . . , n})t such that for every x * �n it holds that x * S if and only if

(#1(x), . . . , #t (x)) * Fn, where # j (x) = |{i * [n] : xi = j}. The generalized tester will approximate each # j (x) up to a

deviation of �/2t.

10

www.cambridge.org/9781107194052
www.cambridge.org

