Contents

Symbols and Acronyms page xii

1 Introduction 1
1.1 Motivation 1
1.2 The Analog Circuit Sizing Problem and the Proposed Approach 5
 1.2.1 Square-Law Perspective 6
 1.2.2 Capturing the Tradeoffs Using Lookup Tables 9
 1.2.3 Generalization 11
 1.2.4 V_{GS}-agnostic design 15
 1.2.5 Design in Weak Inversion 15
1.3 Content Overview 17
1.4 Prerequisites 18
1.5 Notation 18
1.6 References 19

2 Basic Transistor Modeling 21
2.1 The Charge Sheet Model (CSM) 21
 2.1.1 The CSM Drain Current Equation 21
 Example 2.1 Surface Potential Calculation 24
 2.1.2 The Dependence of the Drain Current on the Drain Voltage 25
 2.1.3 The Transconductance Efficiency g_m/I_D 27
2.2 The Basic EKV Model 28
 2.2.1 The Basic EKV Equations 28
 2.2.2 The Basic EKV Model for a Grounded-Source MOS Transistor 32
 2.2.3 Strong and Weak Inversion Approximations of the EKV Model 33
 2.2.4 Basic EKV Model Expressions for g_m and g_mI_D 34
 2.2.5 EKV Parameter Extraction 36
 Example 2.2 EKV Parameter Extraction for the CSM Device 37
2.3 Real Transistors 39
 2.3.1 Real Drain Current Characteristics $I_D(V_{GS})$ and g_mI_D 39
 Example 2.3 EKV Parameter Extraction for Real Transistors 41
 2.3.2 The Drain Saturation Voltage V_{Dsat} of Real Transistors 45
Contents

2.3.3 Impact of Bias Conditions on EKV Parameters 47
2.3.4 The Drain Current Characteristic $I_D(V_{DS})$ 49
2.3.5 The Output Conductance g_{os} 51
2.3.6 The g_{ds}/I_D Ratio 53
2.3.7 The Intrinsic Gain 54
2.3.8 MOSFET Capacitances and the Transit Frequency f_T 55
2.4 Summary 60
2.5 References 61

3 Basic Sizing Using the g_m/I_D Methodology

3.1 Sizing an Intrinsic Gain Stage (IGS) 62
3.1.1 Circuit Analysis 62
3.1.2 Sizing Considerations 65
3.1.3 Sizing for Given L and g_m/I_D 66
Example 3.1 A Basic Sizing Example 67
3.1.4 Basic Tradeoff Exploration 70
Example 3.2 Sizing at Constant g_{os}/I_D 71
Example 3.3 Sizing at Constant f_T 73
Example 3.4 Sizing at Constant $|A_v|$ 77
3.1.5 Sizing in Weak Inversion 79
Example 3.5 Sizing in Weak Inversion Given a Width Constraint 82
3.1.6 Sizing Using the Drain Current Density 83
Example 3.6 Sizing Using Contours in the J_D and L Plane 87
3.1.7 Inclusion of Extrinsic Capacitances 90
Example 3.7 Iterative Sizing to Account for Self-Loading 92
3.2 Practical Common-Source Stages 93
3.2.1 Active Load 94
Example 3.8 Sizing a CS Stage with Active Load 95
Example 3.9 Large-Signal Characteristic of a CS Stage with Active Load 98
3.2.2 Resistive Load 99
Example 3.10 Sizing a CS Stage with Resistive Load 101
3.3 Differential Amplifier Stages 102
Example 3.11 Sizing a Differential Pair with Ideal Current Source Loads 105
Example 3.12 Sizing a Differential Amplifier with Current-Mirror Load 108
Example 3.13 Sizing a Differential Amplifier with Resistive Input Driver and Resistive Loads 111
3.4 Summary 113
3.5 References 113

4 Noise, Distortion and Mismatch

4.1 Electronic Noise 114
4.1.1 Thermal Noise Modeling 114
4.1.2 Tradeoff between Thermal Noise, GBW and Supply Current 117
Example 4.1 Sizing of a Low-Noise IGS 118
4.1.3 Thermal Noise from Active Loads 119
Example 4.2 Choosing \(g_m/I_d \) of a p-Channel Load for Maximum Dynamic Range 120
4.1.4 Flicker Noise (1/f Noise) 121
Example 4.3 Estimation of the Flicker Noise Corner Frequency 125

4.2 Nonlinear Distortion 126
4.2.1 Nonlinearity of the MOS Transconductance 126
4.2.2 Nonlinearity of the MOS Differential Pair 131
Example 4.4 Sizing a Differential Amplifier Based on Distortion Specs 136
4.2.3 Inclusion of the Output Conductance 139
Example 4.5 Sizing of a Resistively Loaded CS Stage with Low HD 146
Example 4.6 Sizing of a Resistively Loaded CS Stage with Low HD and \(V_{DD} = 1.2 \) V 149

4.3 Random Mismatch 150
4.3.1 Modeling of Random Mismatch 151
4.3.2 Effect of Mismatch in a Current Mirror 153
Example 4.7 Random Mismatch Estimation in a Current Mirror 154
4.3.3 Effect of Mismatch in a Differential Amplifier 159
Example 4.8 Offset Drift Estimation 162

4.4 Summary 162
4.5 References 163

5 Practical Circuit Examples I 165

5.1 Constant Transconductance Bias Circuit 165
Example 5.1 Sizing of a Constant Transconductance Bias Circuit 168

5.2 High-Swing Cascoded Current Mirror 171
5.2.1 Sizing the Current Mirror Devices 174
5.2.2 Sizing the Cascode Bias Circuit 175

5.3 Low-Dropout Voltage Regulator 177
5.3.1 Low-Frequency Analysis 180
Example 5.2 Basic Sizing of an LDO 181
5.3.2 High-Frequency Analysis 184
Example 5.3 Sizing the LDO’s Load Capacitance 187

5.4 RF Low-Noise Amplifier 189
5.4.1 Sizing for Low-Noise Figure 190
Example 5.4 Sizing the LNA for a Given Noise Figure 192
5.4.2 Sizing for Low-Noise Figure and Low Distortion 196
Example 5.5 Sizing the LNA for Minimum HD 197

5.5 Charge Amplifier 200
5.5.1 Circuit Analysis 201
5.5.2 Optimization Assuming Constant Transit Frequency 204
5.5.3 Optimization Assuming Constant Drain Current 205
Contents

Example 5.6 Charge Amplifier Optimization (Constant I_D)	205
5.5.4 Optimization Assuming Constant Noise and Bandwidth	207
Example 5.7 Charge Amplifier Optimization (Constant Noise and Bandwidth)	209
Example 5.8 Charge Amplifier Sizing	210
Example 5.9 Charge Amplifier Re-sizing for Smaller Area	213
5.6 Designing for Process Corners	214
5.6.1 Biasing Considerations	214
5.6.2 Technology Evaluation over Process and Temperature	216
Example 5.10 Constant Transconductance Bias Circuit Performance across Process Corners	220
5.6.3 Possible Design Flows	221
Example 5.11 Design of a Charge Amplifier with Corner Awareness	222
5.7 Summary	224
5.8 References	225

6 Practical Circuit Examples II

6.1 Basic OTA for Switched-Capacitor Circuits	226
6.1.1 Small-Signal Circuit Analysis	226
6.1.2 Optimization Assuming Constant Noise and Bandwidth	231
Example 6.1 Optimization of the Basic OTA	233
Example 6.2 Sizing of the Basic OTA	237
6.1.3 Optimization in Presence of Slewing	242
Example 6.3 Sizing of the Basic OTA Circuit in Presence of Slewing	245
6.2 Folded-Cascode OTA for Switched-Capacitor Circuits	249
6.2.1 Design Equations	249
6.2.2 Optimization Procedure	255
Example 6.4 Sizing of the Folded-Cascode Output Branch	255
Example 6.5 Optimization of the Folded-Cascode OTA	258
Example 6.6 Sizing the Folded-Cascode OTA	262
6.2.3 Optimization in Presence of Slewing	266
6.3 Two-Stage OTA for Switched-Capacitor Circuits	267
6.3.1 Design Equations	268
6.3.2 Optimization Procedure	270
Example 6.7 Optimization of the Two-Stage OTA	272
Example 6.8 Sizing the Two-Stage OTA	277
6.3.3 Optimization in Presence of Slewing	281
6.4 Simplified Design Flows	283
6.4.1 Folded-Cascode OTA	284
6.4.2 Two-Stage OTA	284
6.5 Sizing Switches	285
Example 6.9 Sizing a Transmission Gate Switch	288
6.6 Summary	289
6.7 References	290
Appendix 1 The EKV Parameter Extraction Algorithm
A.1.1 Review of Equations 292
A.1.2 Parameter Extraction Algorithm 292
A.1.3 Matlab Function XTRACT.m 294
A.1.4 Parameter Extraction Example 294
A.1.5 Matlab Function XTRACT2.m 297
A.1.6 Corner Parameter Extraction 299
A.1.7 Conclusion 302
A.1.8 References 302

Appendix 2 Lookup Table Generation and Usage
A.2.1 Lookup Table Generation 303
 A.2.1.1 Configuration File 305
 A.2.1.2 Generating Lookup Tables for a New Technology 307
A.2.2 Matlab Function lookup.m 307
A.2.3 Matlab Function lookupVGS.m 309
A.2.4 Lookup of Ratios with Non-monotonic Vectors 310
A.2.5 LookupVGS with Non-monotonic g_m/I_D Vector 313
A.2.6 Passing Design Variables to the Simulator 313
A.2.7 References 314

Appendix 3 Layout Dependence
A.3.1 Introduction to Layout Dependent Effects (LDE) 315
A.3.2 Transistor Finger Partitioning 316
A.3.3 Width Dependence of Parameter Ratios 317
A.3.4 References 321

Index 322