AC analysis, 69
ACM (advanced compact model), 28
active load, 94
amplifier
charge, 18, 200
common-source, 93
differential, 159, 179
folded-cascode, 18
low-noise (LNA), 18, 188
two-stage, 18, 184
backgate parameter, 22
balun
active, 188
bias
cascade, 175
constant current, 215f. 5.35
constant transconductance, 215, 221
bias circuit
constant transconductance, 165
bias voltage, 62
bipolar junction transistor (BJT), 27
BSIM (Berkeley short-channel IGFET model), 2, 39
bulk potential, 23
Cadence Spectre, 39, 303
capacitance
extrinsic, 69, 90
gate-to-bulk, 57
gate-to-drain, 56
gate-to-source, 56
junction, 56, 62, 90
cds_srr, 304
channel length modulation, 40, 49, 295
charge redistribution, 226
charge sheet model, 17, 21
class-A, 5
CMFB (common-mode feedback), 227f. 6.2, 240
CMOS (complementary metal-oxide-semiconductor), 1
common mode, 282
common-gate stage, 189
common-mode feedback, 105
common-source stage, 189
compliance voltage, 173
configuration file, 305
contour plots, 85f. 3.18
corner frequency, 63, 229
current density, 11, 44, 83
current factor, 22, 29, 151
current mirror, 153, 171
current-mirror load, 108
DC sweep, 9, 303
de-normalization, 66, 96
depletion region, 41
DBL (drain-induced barrier lowering), 17, 40, 48, 68,
74, 80, 106, 146, 295
differential pair, 5, 13, 62, 102, 131
diffusion, 21
distortion, 15, 18, 71, 126
cancellation, 199
differential pair, 131
fractional harmonic, 129, 196
harmonic, 128, 141
intercept point, 199
null, 130, 144, 196
output conductance, 139
transconductance, 126
drain current
normalized, 29
drift, 21
dynamic range, 95, 120
Early voltage, 53, 68, 94, 173
effective noise charge (ENC), 203
EKV model (Enz Krummenacher Vittoz model), 5, 28
basic, 21, 28, 31, 127, 166, 292
fan-out, 12, 64, 83, 116, 203, 230
feedback
series-shunt, 180
shunt-shunt, 201
feedback factor, 229
maximum possible, 229
figure of merit, 6
finger partitioning, 316
finger width, 316
flat-band voltage, 28
full design automation, 3
gain boosting, 265
gain error
 static, 230
gate overdrive, 15
gate overdrive voltage, 7
GBW (gain-bandwidth product), 12, 64
generic flow, 12

Hooge model, 121

IGS (intrinsic gain stage), 17, 62, 114
interpolation, 307, 310
interpolation method, 308
intrinsic gain, 54, 63, 70, 217, 319
inversion charge, 7
inversion coefficient, 5, 15
inversion level, 4
iterative sizing, 92

large-signal characteristic, 98, 102
layout, 315
layout area, 154, 181, 213
layout dependent effects, 315
line regulation, 186
LNA (low-noise amplifier), 8
load capacitance, 229
total, 229
load regulation, 180
lookup, 9, 39, 307
lookup table, 3, 9, 39, 294, 304, 315
lookupVGS, 67, 82 n.3, 106, 309
loop gain, 228
low-frequency, 228, 253, 255

McWorther model, 121
Miller compensation, 267
Miller effect, 111, 185
Miller theorem, 65
minimum width, 317
mismatch, 18
current factor, 151
Pelgrum model, 152
random, 151
systematic, 151, 171
threshold voltage, 151
mobile charge density, 22
normalized, 29, 33, 125
mobility degradation, 1, 39, 42, 108, 118, 127, 141, 293
moderate inversion, 1, 10, 24, 28, 43, 100, 236
narrow-width effects, 67
neutralization, 268
noise, 18
active load, 119
cancellation, 189
electronic, 114
flicker, 114, 121
flicker corner, 121
input-referred, 116
man-made, 114
power spectral density, 230
scaling, 241
shot, 114
supply, 177, 178
thermal, 114
total integrated, 124, 230
noise figure, 190, 192
notation, 18
offset drift, 160
on-resistance, 286
optimization
 constant drain current, 205
 constant noise and bandwidth, 207, 231
 constant transit frequency, 204
OTA (operational transconductance amplifier), 18, 226
 basic, 226
 folded-cascode, 249, 284
two-stage, 267, 284
output conductance, 51
overdesign, 222
pinch-off voltage, 24, 30, 294
pocket implants, 47, 152
pole
 dominant, 111, 184, 269
 non-dominant, 111, 184, 249, 255, 269
 pole-zero doublet, 110
power supply rejection (PSR), 179
process corners, 47, 214, 299
PSP (Penn State Philips model), 2, 17, 39, 58
quasi-static model, 56, 65
return ratio, 228
reverse short channel effect, 47
self-loading, 91, 96, 110, 253, 269
sensitivity parameters, 51
settling error
 dynamic, 230
 settling time, 230, 244
shallow trench isolation, 315
silicon on insulator (SOI), 27
slaw rate, 243, 267, 281
slewing, 242, 266, 281
 asymmetric, 282
 slewing time, 244
specific current, 16, 29, 44, 49, 108, 292
Index

Spectre Matlab Toolbox, 39, 304
square-law, 1, 6
square-law model, 33, 134
step response, 230
 critically damped, 251
strong inversion, 10, 23, 35, 45, 100, 236
subthreshold slope factor, 27, 108, 114, 292
surface potential, 21, 24
switch resistance, 226
switched-capacitor circuits, 226
Taylor series, 126
 two-dimensional, 139
technology scaling, 125
temperature variations, 165
threshold voltage, 14, 22
threshold voltage, 23, 28, 31, 41, 47, 151, 292, 315
threshold voltage roll-off, 47
time constant, 230
transcapacitance, 56
transconductance, 34
transconductance efficiency, 4, 27, 34, 65
 normalized, 34, 43
transit frequency, 12, 57, 70, 73, 117, 217, 319
transmission gate, 285
unity gain frequency, 64
V_{DSAT}, 7, 15, 26, 45, 52, 71, 94, 99, 174, 216
voltage biasing, 15
voltage regulator, 177
 low-dropout (LDO), 18, 108, 177
weak inversion, 1, 10, 14, 23, 33, 34, 45, 65, 79, 83, 156,
 167, 233
weak inversion knee, 81
width independence, 9
XTRACT, 36 n.6, 41, 47, 51, 294, 297
zero
 right half-plane, 184, 229