Systematic Design of Analog CMOS Circuits
Using Pre-Computed Lookup Tables

Discover a fresh approach to efficient and insight-driven analog integrated circuit design in nanoscale-CMOS with this hands-on guide.

- Expert authors present a sizing methodology that employs SPICE-generated lookup tables, enabling close agreement between hand analysis and simulation.
- Illustrates the exploration of analog circuit tradeoffs using the $g_m/I_D$ ratio as a central variable in script-based design flows, captured in downloadable Matlab code.
- Includes over forty detailed worked examples, including the design of low-noise and low-distortion gain stages, and operational transconductance amplifiers.

Whether you are a professional analog circuit designer, a researcher, or a graduate student, this book will provide you with the theoretical know-how and practical tools you need to acquire a systematic and re-use oriented design style for analog integrated circuits in modern CMOS.

Paul G. A. Jespers is a Professor Emeritus of the Université Catholique de Louvain and a Life Fellow of the IEEE.

Boris Murmann is a Professor of Electrical Engineering at Stanford University, and a Fellow of the IEEE.
“Analog design generates insight, but requires expertise. To build up such expertise, analytic models are used to create design procedures. Indeed, analytic models easily allow device sizing from specifications. They lack accuracy, however. The models of present-day nanometer MOS transistors have become rather complicated. On the other hand SPICE simulations do provide the required accuracy but don’t generate as much insight. The use of SPICE-generated lookup tables, as described in this book, provides an excellent compromise. The accuracy is derived from SPICE and the design procedure itself is made through MATLAB employing parameters like $g_m/I_D$. As a result a considerable amount of intuition can be built up. Such design procedure is highly recommended to whoever wants to gain insight by doing analog design, without losing the accuracy of real SPICE simulations.”

Willy Sansen, KU Leuven

“With the advent of sub-micron MOS transistors more than two decades ago, traditional design based on the square-law model is no longer adequate. Alternatives such as ‘tweaking’ with SPICE or relying on more sophisticated device models do not provide the circuit insight necessary for optimized design or are too mathematically complex.

The design methodology presented in this book overcomes these shortcomings. A focus on fundamental design parameters – dynamic range, bandwidth, power dissipation – naturally leads to optimized solutions, while relying on transistor data extracted with the simulator ensures agreement between design and verification. Comprehensive design examples of common blocks such as OTAs show how to readily apply these concepts in practice.

This book fixes what has been broken with analog design for more than twenty years. I recommend it to experts and novices alike.”

Bernhard Boser, University of California, Berkeley

“The authors present a clever solution to capture the precision of the best MOSFET models, current or future, in a comprehensive and efficient design flow compatible with nanometric CMOS processes. In this book, you will also enjoy a wealth of invaluable information to deepen your analog design skills.”

Yves Leduc, Polytech Nice Sophia
Systematic Design of Analog CMOS Circuits
Using Pre-Computed Lookup Tables

PAUL G. A. JESPERS
Université Catholique de Louvain, Belgium

BORIS MURMANN
Stanford University
To my granddaughter Zérane
PGAJ

To my wife Yukiko
BM
Contents

Symbols and Acronyms                                      page xii

1 Introduction                                             1
  1.1 Motivation                                            1
  1.2 The Analog Circuit Sizing Problem and the Proposed Approach 5
    1.2.1 Square-Law Perspective                             6
    1.2.2 Capturing the Tradeoffs Using Lookup Tables        9
    1.2.3 Generalization                                     11
    1.2.4 $V_{GS}$-agnostic design                          15
    1.2.5 Design in Weak Inversion                           15
  1.3 Content Overview                                      17
  1.4 Prerequisites                                          18
  1.5 Notation                                              18
  1.6 References                                            19

2 Basic Transistor Modeling                                21
  2.1 The Charge Sheet Model (CSM)                          21
    2.1.1 The CSM Drain Current Equation                    21
    Example 2.1 Surface Potential Calculation             24
    2.1.2 The Dependence of the Drain Current on the Drain Voltage 25
    2.1.3 The Transconductance Efficiency $g_m/I_D$        27
  2.2 The Basic EKV Model                                    28
    2.2.1 The Basic EKV Equations                           28
    2.2.2 The Basic EKV Model for a Grounded-Source MOS Transistor 32
    2.2.3 Strong and Weak Inversion Approximations of the EKV Model 33
    2.2.4 Basic EKV Model Expressions for $g_m$ and $g_m/I_D$ 34
    2.2.5 EKV Parameter Extraction                         36
    Example 2.2 EKV Parameter Extraction for the CSM Device 37
  2.3 Real Transistors                                       39
    2.3.1 Real Drain Current Characteristics $I_D(V_{GS})$ and $g_m/I_D$ 39
    Example 2.3 EKV Parameter Extraction for Real Transistors 41
    2.3.2 The Drain Saturation Voltage $V_{Dsat}$ of Real Transistors 45
Contents

2.3.3 Impact of Bias Conditions on EKV Parameters 47
2.3.4 The Drain Current Characteristic $I_D(V_{DS})$ 49
2.3.5 The Output Conductance $g_{os}$ 51
2.3.6 The $g_{os}/I_D$ Ratio 53
2.3.7 The Intrinsic Gain 54
2.3.8 MOSFET Capacitances and the Transit Frequency $f_T$ 55
2.4 Summary 60
2.5 References 61

3 Basic Sizing Using the $g_m/I_D$ Methodology 62

3.1 Sizing an Intrinsic Gain Stage (IGS) 62
3.1.1 Circuit Analysis 62
3.1.2 Sizing Considerations 65
3.1.3 Sizing for Given $L$ and $g_m/I_D$ 66
Example 3.1 A Basic Sizing Example 67
3.1.4 Basic Tradeoff Exploration 70
Example 3.2 Sizing at Constant $g_m/I_D$ 71
Example 3.3 Sizing at Constant $f_T$ 73
Example 3.4 Sizing at Constant $|A_v|_0$ 77
3.1.5 Sizing in Weak Inversion 79
Example 3.5 Sizing in Weak Inversion Given a Width Constraint 82
3.1.6 Sizing Using the Drain Current Density 83
Example 3.6 Sizing Using Contours in the $J_D$ and $L$ Plane 87
3.1.7 Inclusion of Extrinsic Capacitances 90
Example 3.7 Iterative Sizing to Account for Self-Loading 92
3.2 Practical Common-Source Stages 93
3.2.1 Active Load 94
Example 3.8 Sizing a CS Stage with Active Load 95
Example 3.9 Large-Signal Characteristic of a CS Stage with Active Load 98
3.2.2 Resistive Load 99
Example 3.10 Sizing a CS Stage with Resistive Load 101
3.3 Differential Amplifier Stages 102
Example 3.11 Sizing a Differential Pair with Ideal Current Source Loads 105
Example 3.12 Sizing a Differential Amplifier with Current-Mirror Load 108
Example 3.13 Sizing a Differential Amplifier with Resistive Input 111
Driver and Resistive Loads
3.4 Summary 113
3.5 References 113

4 Noise, Distortion and Mismatch 114

4.1 Electronic Noise 114
4.1.1 Thermal Noise Modeling 114
4.1.2 Tradeoff between Thermal Noise, GBW and Supply Current 117
Contents

Example 4.1 Sizing of a Low-Noise IGS 118
4.1.3 Thermal Noise from Active Loads 119
Example 4.2 Choosing $g_m/I_D$ of a p-Channel Load for Maximum Dynamic Range 120
4.1.4 Flicker Noise (1/f Noise) 121
Example 4.3 Estimation of the Flicker Noise Corner Frequency 125
4.2 Nonlinear Distortion 126
4.2.1 Nonlinearity of the MOS Transconductance 126
4.2.2 Nonlinearity of the MOS Differential Pair 131
Example 4.4 Sizing a Differential Amplifier Based on Distortion Specs 136
4.2.3 Inclusion of the Output Conductance 139
Example 4.5 Sizing of a Resistively Loaded CS Stage with Low $HD_2$ 146
Example 4.6 Sizing of a Resistively Loaded CS Stage with Low $HD_2$ and $V_{DD} = 1.2$ V 149
4.3 Random Mismatch 150
4.3.1 Modeling of Random Mismatch 151
4.3.2 Effect of Mismatch in a Current Mirror 153
Example 4.7 Random Mismatch Estimation in a Current Mirror 154
4.3.3 Effect of Mismatch in a Differential Amplifier 159
Example 4.8 Offset Drift Estimation 162
4.4 Summary 162
4.5 References 163

5 Practical Circuit Examples I 165

5.1 Constant Transconductance Bias Circuit 165
Example 5.1 Sizing of a Constant Transconductance Bias Circuit 168
5.2 High-Swing Cascoded Current Mirror 171
5.2.1 Sizing the Current Mirror Devices 174
5.2.2 Sizing the Cascode Bias Circuit 175
5.3 Low-Dropout Voltage Regulator 177
5.3.1 Low-Frequency Analysis 180
Example 5.2 Basic Sizing of an LDO 181
5.3.2 High-Frequency Analysis 184
Example 5.3 Sizing the LDO's Load Capacitance 187
5.4 RF Low-Noise Amplifier 189
5.4.1 Sizing for Low-Noise Figure 190
Example 5.4 Sizing the LNA for a Given Noise Figure 192
5.4.2 Sizing for Low-Noise Figure and Low Distortion 196
Example 5.5 Sizing the LNA for Minimum $HD_2$ 197
5.5 Charge Amplifier 200
5.5.1 Circuit Analysis 201
5.5.2 Optimization Assuming Constant Transit Frequency 204
5.5.3 Optimization Assuming Constant Drain Current 205
Example 5.6 Charge Amplifier Optimization (Constant $I_D$) 205
5.5.4 Optimization Assuming Constant Noise and Bandwidth 207
Example 5.7 Charge Amplifier Optimization (Constant Noise and Bandwidth) 209
Example 5.8 Charge Amplifier Sizing 210
Example 5.9 Charge Amplifier Re-sizing for Smaller Area 213
5.6 Designing for Process Corners 214
5.6.1 Biasing Considerations 214
5.6.2 Technology Evaluation over Process and Temperature 216
Example 5.10 Constant Transconductance Bias Circuit Performance across Process Corners 220
5.6.3 Possible Design Flows 221
Example 5.11 Design of a Charge Amplifier with Corner Awareness 222
5.7 Summary 224
5.8 References 225

6 Practical Circuit Examples II 226
6.1 Basic OTA for Switched-Capacitor Circuits 226
6.1.1 Small-Signal Circuit Analysis 226
6.1.2 Optimization Assuming Constant Noise and Bandwidth 231
Example 6.1 Optimization of the Basic OTA 233
Example 6.2 Sizing of the Basic OTA 237
6.1.3 Optimization in Presence of Slew ing 242
Example 6.3 Sizing of the Basic OTA Circuit in Presence of Slew ing 245
6.2 Folded-Cascode OTA for Switched-Capacitor Circuits 249
6.2.1 Design Equations 249
6.2.2 Optimization Procedure 255
Example 6.4 Sizing of the Folded-Cascode Output Branch 255
Example 6.5 Optimization of the Folded-Cascode OTA 258
Example 6.6 Sizing the Folded-Cascode OTA 262
6.2.3 Optimization in Presence of Slew ing 266
6.3 Two-Stage OTA for Switched-Capacitor Circuits 267
6.3.1 Design Equations 268
6.3.2 Optimization Procedure 270
Example 6.7 Optimization of the Two-Stage OTA 272
Example 6.8 Sizing the Two-Stage OTA 277
6.3.3 Optimization in Presence of Slew ing 281
6.4 Simplified Design Flows 283
6.4.1 Folded-Cascode OTA 284
6.4.2 Two-Stage OTA 284
6.5 Sizing Switches 285
Example 6.9 Sizing a Transmission Gate Switch 288
6.6 Summary 289
6.7 References 290
Appendix 1 The EKV Parameter Extraction Algorithm
A.1.1 Review of Equations 292
A.1.2 Parameter Extraction Algorithm 292
A.1.3 Matlab Function XTRACT.m 294
A.1.4 Parameter Extraction Example 294
A.1.5 Matlab Function XTRACT2.m 297
A.1.6 Corner Parameter Extraction 299
A.1.7 Conclusion 302
A.1.8 References 302

Appendix 2 Lookup Table Generation and Usage
A.2.1 Lookup Table Generation 303
A.2.1.1 Configuration File 305
A.2.1.2 Generating Lookup Tables for a New Technology 307
A.2.2 Matlab Function lookup.m 307
A.2.3 Matlab Function lookupVGS.m 309
A.2.4 Lookup of Ratios with Non-monotonic Vectors 310
A.2.5 LookupVGS with Non-monotonic $g_m/I_D$ Vector 313
A.2.6 Passing Design Variables to the Simulator 313
A.2.7 References 314

Appendix 3 Layout Dependence
A.3.1 Introduction to Layout Dependent Effects (LDE) 315
A.3.2 Transistor Finger Partitioning 316
A.3.3 Width Dependence of Parameter Ratios 317
A.3.4 References 321

Index 322
Symbols and Acronyms

$A_v$  Small-signal voltage gain
$A_{v0}$  Low frequency small-signal voltage gain
$A_{intr}$  Intrinsic gain
$A_{VT}$  Pelgrom coefficient for threshold voltage mismatch
$A_{\beta}$  Pelgrom coefficient for current factor mismatch
ACM  Advanced Compact Model
CLM  Channel Length Modulation
CSM  Charge Sheet Model
$C$  Capacitor value
$C_{ox}$  Oxide capacitance per unit area
$C_{gb}$  Gate-to-bulk capacitance
$C_{gd}$  Gate-to-drain capacitance
$C_{gs}$  Gate-to-source capacitance
$C_j$  Junction capacitance
$C_c$  Compensation capacitance
CMOS  Complementary Metal Oxide Semiconductor
$C_{self}$  Self-loading capacitance of an amplifier
$D$  Diffusion constant
DIBL  Drain-Induced Barrier Lowering
EKV  Enz, Krumenacher and Vittoz compact model
$FO$  Fan-out (ratio between load and input capacitances of a circuit)
$f$  Frequency in Hz
$f_c$  Cutoff frequency (−3dB frequency)
$f_T$  Transit frequency
$f_u$  Unity gain frequency (where $|A_v|=1$)
$g_{ds}$  Output conductance
$g_m$  Gate transconductance
$g_{mk}$  $k$th derivative of $I_D$ with respect to $V_{GS}$
$g_{mb}$  Bulk transconductance
$g_{ma}$  Source transconductance
HD$_2$, HD$_3$  Fractional harmonic distortion of order 2, 3, …
i  Normalized drain current
IGS  Intrinsic Gain Stage
Symbols and Acronyms

- $I_D$: DC drain current
- $I_S$: Specific current
- $I_{S\text{sq}}$: Square specific current ($W = L$)
- $I_{S\text{u}}$: Unary specific current ($W = 1 \mu\text{m}$)
- $J_D$: Drain current density ($I_D/W$)
- $L$: Gate length
- $N$: Impurity concentration
- $n$: Subthreshold slope factor
- $q$: Normalized mobile charge density
- $q_S$, $q_D$: Normalized mobile charge density at the source and drain
- $Q_i$: Mobile charge density
- $\text{RHP}$: Right Half Plane
- $S_{\text{VT0}}$: Threshold voltage sensitivity factor with respect to $V_{DS}$
- $S_{\text{IS}}$: Specific current sensitivity factor with respect to $V_{DS}$
- $U_T$: Thermal voltage $kT/q$
- $V_X$: DC voltage component at node $x$
- $v_x$: AC voltage component at node $x$
- $v_X$: Total voltage at node $x$, $v_X = V_X + v_x$
- $V_{EA}$: Early voltage
- $V_I$: DC component of input voltage
- $v_i$: AC component of input voltage
- $V_{id}$: Total input voltage $V_{id} = V_I + v_i$
- $V_{S}$, $V_{GS}$, $V_{D}$: Source, gate and drain voltage with respect to bulk (DC)
- $V_{GS}$, $V_{DS}$: Gate and drain voltage with respect to the source (DC)
- $v_{gs}$, $v_{ds}$: Incremental gate and drain voltage with respect to the source
- $v_{gs,pk}$, $v_{ds,pk}$: Incremental gate and drain voltage amplitude (sinusoid)
- $V_p$: Pinch-off voltage with respect to the bulk
- $V_{\text{Sat}}$: Drain saturation voltage
- $v_{sat}$: Saturation velocity of mobile carriers
- $V_T$: Threshold voltage
- $V_{OV}$: Gate overdrive voltage, $V_{GS} - V_T$
- $W$: Transistor width
- $\beta$: Current factor\(^1\) ($\mu C_\text{ox} W/L$)
- $\gamma$: Backgate effect parameter
- $\gamma_n$, $\gamma_p$: Thermal noise factor for n-channel and p-channel devices\(^2\)
- $\mu$: Mobility
- $\mu_o$: Low-field mobility
- $\rho$: Normalized transconductance efficiency

\(^1\) The symbol $\beta$ is also used to denote the feedback factor in amplifier circuits. The distinction is usually clear from the context.
\(^2\) The distinction from the backgate effect parameter $\gamma$ is usually clear from the context.
Symbols and Acronyms

ψ_s  Surface potential
ω  Angular frequency (2πf)
ω_c  Angular cutoff frequency (2πf_c)
ω_T  Angular transit frequency (2πf_T)
ω_T_i  Angular transit frequency considering only C_g (instead of C_gg)