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Motivation and Background

An efficient, but abstract, way to approach the subject of
automorphic forms is by the introduction of adeles,
rather ungainly objects that nevertheless, once familiar, spare
much unnecessary thought and many useless calculations.

4 Robert P. Langlands
1

This ûrst chapter serves as a tour d’horizon of the topics covered in this book.

Its purpose is to introduce and survey the key concepts relevant for the study

of automorphic forms and automorphic representations in the adelic language

(Part One of the book), their application in string theory (Part Two) and how

they relate to other questions of current research interest in mathematics and

physics (Part Three).

1.1 Automorphic Forms and Eisenstein Series

Automorphic forms are complex functions f (g) on a real Lie group G that

(1) are invariant under the action of a discrete subgroup Γ ¢ G : f (γ · g) =

f (g) for all γ * Γ,

(2) satisfy eigenvalue diûerential equations under the action of the ring of

G-invariant diûerential operators, and

(3) have well-behaved growth conditions.

1 Mostow, G. D. and Caldi, D. G. (eds) 1989. Representation Theory: Its Rise and Its Role in

Number Theory (Proceedings of the Gibbs Symposium). American Mathematical Society,
Providence, RI.
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2 Motivation and Background

A more explicit and reûned form of these conditions will be given in Chapter 4

when we properly deûne automorphic forms; here we content ourselves with

a qualitative description based on examples. We will mainly be interested in

automorphic forms f (g) that are invariant under the action of the maximal

compact subgroup K of G when acting from the right: f (gk) = f (g) for all

k * K ; such forms are called K-spherical. The automorphic forms are then

functions on the coset space G/K .

The prime example of an automorphic form is obtained when considering

G = SL(2,R) and Γ = SL(2,Z) ¢ SL(2,R). The maximal compact subgroup

is K = SO(2,R) and the coset space G/K is a real two-dimensional constant

negative curvature space isomorphic to the Poincaré upper half-plane,

H = {z = x + iy | x, y * R and y > 0}. (1.1)

A function satisfying the three criteria above is then given by the non-

holomorphic function with s * C,

fs (z) =
∑

(c,d)*Z2

(c,d)�(0,0)

y
s

|cz + d |2s
. (1.2)

The sum converges absolutely for Re(s) > 1. The action of an element γ *

SL(2,Z) on z * H is given by the standard fractional linear form (see Section

4.1)

γ · z =
az + b

cz + d
for γ =

(

a b

c d

)

* SL(2,Z). (1.3)

Property (1) is then veriûed by noting that the integral lattice (c, d) * Z2 is

preserved by the action of SL(2,Z) and acting with γ * SL(2,Z) on (1.2)

merely reorders the terms in the absolutely convergent sum. Property (2) in

this case reduces to a single equation since there is only a single primitive

SL(2,R)-invariant diûerential operator on SL(2,R)/SO(2,R). This operator is

given by

∆ = y
2
(

∂2
x + ∂

2
y

)

(1.4)

and corresponds to the (scalar) Laplace–Beltrami operator on the upper half-

plane H. In group theoretical terms it is the quadratic Casimir operator. Acting

with it on the function (1.2), one ûnds

∆ fs (z) = s(s 2 1) fs (z) (1.5)

and hence fs (z) is an eigenfunction of ∆ (and therefore of the full ring of

diûerential operators generated by ∆). Condition (3) relating to the growth of

the function here corresponds to the behaviour of fs (z) near the boundary of
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1.1 Automorphic Forms and Eisenstein Series 3

the upper half-plane, more particularly near the so-called cusp at infinity when

y ³ >.2 The growth condition requires fs (z) to grow at most as a power law

as y ³ >. To verify this point it is easiest to consider the Fourier expansion of

fs (z). This requires a bit more machinery and also paves the way to the general

theory. We will introduce it heuristically in Section 1.3 below and in detail in

Chapter 6.

The form of the function fs (z) is very speciûc to the action of SL(2,Z) on the

upper half-plane H. To prepare the ground for the more general theory of auto-

morphic forms for higher-rank Lie groups we shall now rewrite (1.2) in a more

suggestive way. In fact, fs (z) is (almost) an example of a (non-holomorphic)

Eisenstein series on G = SL(2,R). To see this, we ûrst extract the greatest

common divisor of the coordinates of the lattice point (c, d) * Z2:

fs (z) = �
�

∑

k>0

k22s�
�

∑

(c,d)*Z2

gcd(c,d)=1

y
s

|cz + d |2s
= ζ (2s)

∑

(c,d)*Z2

gcd(c,d)=1

y
s

|cz + d |2s
, (1.6)

where we have evaluated the sum over the common divisor k using the Riemann

zeta function [541]

ζ (s) =
∑

n>0

n2s . (1.7)

Referring back to (1.3), we can rewrite the summand using an element γ of the

group SL(2,Z):

y
s

|cz + d |2s
=

[

Im (γ · z)
] s

for γ =

(

a b

c d

)

. (1.8)

For interpreting all summands in (1.6) in this way, two things have to occur:

(i) for any coprime pair (c, d) such a matrix γ * SL(2,Z) must exist, and

(ii) if several matrices exist we must form equivalence classes such that the

sum over coprime pairs (c, d) corresponds exactly to the sum over equivalence

classes. For (i), we note that the condition that c and d be coprime is necessary

since it would otherwise be impossible to satisfy the determinant condition

ad 2 bc = 1 over Z. At the same time, co-primality is suûcient to guarantee

existence of integers a0 and b0 that complete c and d to a matrix γ * SL(2,Z).

In fact, there is a one-parameter family of solutions for γ that can be written as
(

a0 + mc b0 + md

c d

)

=

(

1 m

0 1

) (

a0 b0

c d

)

(1.9)

2 For Γ = SL(2, Z) this is the only cusp up to equivalence. With this, one means that any
fundamental domain of the action of Γ on H only touches the boundary of the upper half-plane
at a single point. See Section 4.1 for illustrations and [439, 417, 73] for more details on discrete
subgroups of SL(2, R).
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4 Motivation and Background

for any integer m * Z. (That these are all solutions to the determinant condition

over Z is an elementary lemma of number theory, sometimes called Bézout’s

lemma [380].) The form (1.9) tells us also how to resolve point (ii): we identify

matrices that are obtained from each other by left-multiplication by a matrix

belonging to the Borel subgroup

B(Z) =

{(

±1 m

0 ±1

) �����
m * Z

}

¢ SL(2,Z). (1.10)

The interpretation of this group is that it is the stabiliser of the x-axis (or the

cusp at inûnity).

Summarising the steps we have performed, we ûnd that we can write the

function (1.2) as

fs (z) = 2ζ (2s)
∑

γ*B(Z)\SL(2,Z)

[

Im (γ · z)
] s
. (1.11)

Since we included the matrix 21 in the deûnition of B(Z), an extra factor of 2

arises in this formula.

Dropping the normalising zeta factor, we obtain the function

E( χs, z) =
∑

γ*B(Z)\SL(2,Z)

χs (γ · z), (1.12)

where we have also introduced the notation χs (z) = [Im(z)]s = y
s . The reason

for this notation is that χs is actually induced from a character on the real

Borel subgroup. We will explain this in detail below in Chapter 4. Note that

this way of writing the automorphic form makes the invariance under SL(2,Z)

completely manifest because it is a sum over images.

The form (1.12) is what we will call an Eisenstein series on SL(2,R) and it

is this form that generalises straightforwardly to Lie groups G(R) other than

SL(2,R) (whereas the form with the sum over a lattice does not, as we discuss

in more detail in Section 15.3). In complete analogy with (1.12) we deûne

the (minimal parabolic) Eisenstein series on G(R) invariant under the discrete

group G(Z) by3

E( χ, g) =
∑

γ*B(Z)\G(Z)

χ(γg), (1.13)

where χ is (induced from) a character on the Borel subgroup B(R) and g*G(R).

Eisenstein series are prototypical automorphic forms and the protagonists of

the story we shall develop.

3 For most of this book, we shall take G(Z) as the discrete Chevalley subgroup of an algebraically
simply-connected group split over the real numbers; see Section 3.1.4 below for more details.
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1.2 Why Eisenstein Series and Automorphic Forms? 5

1.2 Why Eisenstein Series and Automorphic Forms?

Before delving into the further analysis of Eisenstein series and automorphic

forms, let us brieüy step back and provide some motivation for their study.

1.2.1 A Mathematician9s Possible Answer

Automorphic forms are of great importance in many ûelds of mathematics such

as number theory, representation theory and algebraic geometry. The various

ways in which automorphic forms enter these seemingly disparate ûelds are

connected by a web of conjectures collectively referred to as the Langlands

program [444, 446, 259, 412, 413, 219] that we will discuss more in Chapter 16.

Much of the arithmetic information is contained in the Fourier coeûcients

of automorphic forms. The standard examples correspond to modular forms

on G(R) = SL(2,R), where these coeûcients yield eigenvalues of Hecke

operators (covered in Chapter 11) and the counting of points on elliptic curves;

see Section 16.4.

For arbitrary Lie groups G(R) one considers the Hilbert space L2(Γ\G(R))

of square-integrable functions that are invariant under a left-action by a discrete

subgroup Γ ¢ G(R). This space carries a natural action of g * G(R), called

the right-regular action, through

[

π(g) f
]

(x) = f (xg), (1.14)

where f * L2 (
Γ\G(R)

)

, g, x * G(R) and π : G(R) ³ Aut
(

L2 (
Γ\G(R)

))

is the right-regular representation map. Since the functions are square-

integrable the representation is unitary. This representation-theoretic viewpoint

on automorphic forms was ûrst proposed by Gelfand, Graev and Piatetski-

Shapiro [267] and later developed considerably by Jacquet and Langlands

[376]. This perspective provides the key to generalising the classical theory of

modular forms on the complex upper half-plane to higher-rank Lie groups.

It is an immediate, important and diûcult question as to what the

decomposition of the space L2(Γ\G(R)) into irreducible representations of

G(R) looks like. The irreducible constituents in this decomposition are called

automorphic representations. This spectral problem was tackled and solved

by Langlands [447]. The Eisenstein series (and their analytic continuations)

form an integral part in the resolution although they themselves are not square-

integrable.4 We shall discuss aspects of this in Chapter 5.

4 A passing physicist might note that this is very similar to using non-normalisable plane waves
as a 8basis9 for wave functions in quantum mechanics. Indeed the piece χ(γg) in (1.13) is
exactly like a plane wave; the γ-sum is there to make it invariant under the discrete group by the
method of images so that E (χ, g) are the simplest Γ-invariant plane waves. The decomposition

www.cambridge.org/9781107189928
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-18992-8 — Eisenstein Series and Automorphic Representations
Philipp Fleig , Henrik P. A. Gustafsson , Axel Kleinschmidt , Daniel Persson 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Motivation and Background

1.2.2 A Physicist9s Possible Answer

Many problems in quantum mechanics are characterised by discrete symme-

tries. At the heart of many of them lies Dirac quantisation, where charges

(e.g., electric or magnetic) of physical states are restricted to lie in certain

lattices rather than in continuous spaces. The discrete symmetries preserving

the lattice are often called dualities and can give very interesting diûerent angles

on a physical problem. This happens in particular in string theory (see Part

Two), where such dualities can mix perturbative and non-perturbative eûects.

For the discrete symmetry to be a true symmetry of a physical theory, all

observable quantities must be given by functions that are invariant under the

discrete symmetry, corresponding to property (1) discussed at the beginning

of Section 1.1. Similarly, the dynamics or other symmetries of the theory

impose diûerential equations on the observables, corresponding to property (2),

and the growth condition (3) is typically associated with having well-deûned

perturbative regimes of the theory. The main example we have in mind here

comes from string theory and the construction of scattering amplitudes of type

II strings in various maximally supersymmetric backgrounds, as is discussed in

Part Two of this book. However, the logic is not necessarily restricted to this;

see also [592, 515, 65, 33] for some other uses of automorphic forms in physics.

For these reasons one is often led naturally to the study of automorphic

forms in physical systems with discrete symmetries. Via this route one also

encounters a spectral problem similar to the one posed by mathematicians

when one needs to determine to which automorphic representation a given

physical observable belongs. Again, the Eisenstein series and their properties

are important building blocks of such spaces and it is important to understand

them well. Furthermore, in a number of examples from string theory it was

actually possible to show that the observable is given by an Eisenstein series

itself [308, 311, 321, 407, 503, 318, 313, 520, 315].5

1.3 Analysing Automorphic Forms and Adelisation

We now return to the study of Eisenstein series deûned by (1.13) and their

properties, starting again with the very explicit example (1.2) for SL(2,R).

of an automorphic function (8wave-packet9) in this basis (extended by the discrete spectrum of
cusp forms and residues) is the content of various trace formulas discussed in Section 5.5.

5 That Eisenstein series are mostly not square-integrable is no problem in these cases since the
object computed (part of a scattering amplitude) is not a wavefunction and not required to be
normalisable.
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1.3 Analysing Automorphic Forms and Adelisation 7

1.3.1 Fourier Expansion of the SL(2,R) Series

The discrete Borel subgroup B(Z) of (1.10) acts on the variable z = x + iy

through translations by
(

±1 m

0 ±1

)

· z = z ± m for m * Z (1.15)

and therefore any SL(2,Z)-invariant function is periodic in the x direction with

period equal to 1 corresponding to the smallest non-trivial m = 1. This means

that we can Fourier expand it in modes e2πinx . Applying this to (1.12) leads to

E( χs, z) = C(y)

︸︷︷︸

constant term
zero mode

+

∑

n�0

an(y)e2πinx

︸��������������︷︷��������������︸
non-zero mode

. (1.16)

As we indicated, it is natural to divide the Fourier expansion into two parts

depending on whether one deals with the zero Fourier mode (a.k.a. constant

term) or with a non-zero Fourier mode. Since the Fourier expansion was only in

the x-direction, the Fourier coeûcients still depend on the second variable y.6

Determining the explicit form of the Fourier coeûcients is one of the key

problems in the study of Eisenstein series. In the example of SL(2,R), this can

for instance be done by making recourse to the formulation in terms of a lattice

sum that was given in (1.2) and using the technique of Poisson resummation.

The calculation is reviewed in Appendix A and leads to the following explicit

expression:

E( χs, z) = y
s
+

ξ (2s 2 1)

ξ (2s)
y

12s

+

2y1/2

ξ (2s)

∑

m�0

|m |s21/2σ122s (m)Ks21/2(2π |m |y)e2πimx, (1.17)

where

ξ (s) = π2s/2Γ(s/2)ζ (s) (1.18)

is the completion of the Riemann zeta function (1.7) with the standard Γ-

function, Ks (y) is the modified Bessel function of the second kind (which

decreases exponentially for y ³ > in accordance with the growth condition)

and

σ122s (m) =
∑

d |m

d122s (1.19)

6 If one dealt with an automorphic form holomorphic in z (called modular form in Chapter 4
below) this would not be true since the holomorphicity condition links the x and y dependence.
The Fourier coeûcients in an expansion in q = e2π i (x+iy)

= e2π iz would be pure numbers.
This is the origin of the name constant term for the zero mode in (1.16).
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8 Motivation and Background

is called a divisor sum (or the instanton measure in physics; see Section 13.6.3)

and given by a sum over the positive divisors of m � 0.

As is evident from (1.17), the explicit form of the Fourier expansion can

appear quite complicated and involves special functions as well as number-

theoretic objects. For the case of more general groups G(R), the method of

Poisson resummation is not necessarily available as there is not always a form

of the Eisenstein series as a lattice sum. It is therefore desirable to develop

alternative techniques for obtaining (parts of) the Fourier expansion under

more general assumptions.7 This is achieved by lifting the Eisenstein series into

an adelic context which we now sketch and explain in more detail in Section 4.4.

1.3.2 Adelisation of Eisenstein Series

A standard elementary technique in number theory for analysing equations

over Z is by analysing them instead as congruences for every prime (and its

powers) separately (sometimes known as the Hasse principle or the local-

global principle based on the Chinese remainder theorem) [23, 500]. One way

of writing all the terms together is to use the ring of adeles A. The adeles can

formally be thought of as an inûnite tuple

a = (a>; a2, a3, a5, a7, . . .) * A = R ×
∏�

p<>

Qp, (1.20)

whereQp denotes the p-adic numbers. The p-adic numbers are a completion of

the rational numberQ that is inequivalent to the standard one (leading toR) and

that is parametrised by a prime number p and deûned properly in Section 2.1.

The product is over all prime numbers and the prime on the product symbol

indicates that the entries ap in the tuple are restricted in a certain way (see (2.59)

below for the exact statement). The real numbers R can be written as Q> in

this context and interpreted as the completion of Q at the 8prime9 p = >. Very

crudely, an adele can be thought of as summarising the information of an object

modulo all primes.

Strong approximation is a similar method that lifts a general automorphic

form from being deûned on the space G(Z)\G(R)/K (R) to the space

G(Q)\G(A)/K (A) so that G(Q) plays the rôle of the discrete subgroup that

was played by G(Z) before. However, G(Q) is a nicer group than G(Z) since

Q is a ûeld whereas Z is only a ring. This facilitates the analysis and allows the

application of many theorems for algebraic groups.

7 Additional care has to be taken for the Fourier expansion for general G(R) also because the
translation group B(Z) is in general not abelian. One can still deûne (abelian) Fourier
coeûcients, as we will see; however, they fail to capture the full Eisenstein series. There are
also non-abelian parts to the Fourier expansion, as we discuss in Chapter 6.
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1.4 Reader’s Guide and Main Theorems 9

A consequence of using strong approximation and adeles is that the result of

many calculations factorises according to (1.20) and one can do the calculation

for all primes and p = > separately. Indeed, the explicit form (1.17) for the

Fourier expansion of the SL(2,R) Eisenstein series already secretly had this

form. This can be seen for example in the constant term, since

ξ (2s 2 1)

ξ (2s)
= π1/2 Γ(s 2 1/2)

Γ(s)

∏

p<>

1 2 p22s

1 2 p122s
, (1.21)

where we have used the deûnition of the completed zeta function from (1.18)

and the Euler product formula for the Riemann zeta function [541]

ζ (s) =
∑

n>0

n2s =
∏

p<>

1

1 2 p2s
. (1.22)

In (1.21), we clearly recognise a factorised form that is very similar to (1.20).

That this is not an accident will be demonstrated in Section 7.2 for SL(2,R).

The factorisation of the (completed) Riemann zeta function itself can also be

understood in this way; see Section 2.7. For the other Fourier modes in (1.17)

we get a similar factorisation with the modiûed Bessel function belonging to

the p = > factor and

σ122s (m) =
∏

p<>

γp (m)
1 2 p2(2s21) |m |2s21

p

1 2 p2(2s21)
, (1.23)

where |m |p is the p-adic norm of m deûned in Section 2.1 and γp (m) selects

all factors with |m |p f 1 as shown in Section 2.4. The complete derivation for

the non-constant terms can be found in Section 7.3 for the SL(2,R) Eisenstein

series.

The adelic methods are so powerful that one can obtain a closed, simple and

group-theoretic formula for the constant term of Eisenstein series on any (split

real) Lie group G(R). This formula, known as the Langlands constant term

formula, will be the topic of Chapter 8.

For the (abelian) Fourier coeûcients, the adelic methods also help to obtain

fairly general results, in particular for the part that involves the ûnite primes

p < >. For the contribution coming from the R in (1.20) the results are not

quite as general; already for SL(2,R) this is what gives the modiûed Bessel

function. We discuss the computation of Fourier coeûcients in Chapter 9.

1.4 Reader9s Guide and Main Theorems

The following is a brief outline of the contents and results of this book that

is divided into three parts. Part One deals with automorphic forms and
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10 Motivation and Background

automorphic representations, Part Two addresses their applications in string

theory and Part Three discusses advanced topics of current research in

mathematics and physics.

As a general rule, we have placed a lot of emphasis on examples and explicit

calculations where possible to illustrate the key concepts. The main theorems

are proved in full detail and many advanced ideas are illustrated with the

main steps, and references are given for additional information. Topics that are

somewhat supplementary to the main thread of the exposition are contained

in sections marked with an asterisk, and they are not essential to follow the

development of the main theory.

We also would like to give some disclaimers: unless otherwise speciûed, all

groups G(R) that will be considered here are associated with split real forms

and we also restrict to algebraically simply-connected groups. Except for certain

sections in Part Three, the base ûeld for the ring of adeles will be the rational

numbers Q. Often we will perform formal manipulations of inûnite sums and

integrals without paying attention to whether the expressions are (absolutely)

convergent or not. The expressions typically depend on a set of parameters and

for some range of parameters convergence can be established, and we assume

them to be in this range. In many cases, the results can be extended by analytic

continuation.

Contents of Part One: Automorphic Representations

Chapters 2 and 3 are introductory and provide some background material and

set the notation for the rest of the book. More precisely, Chapter 2 introduces the

basic machinery of p-adic and adelic analysis which will be crucial for almost

everything we do later. The main thrust of the chapter is provided by the nu-

merous examples of computing p-adic integrals that will be used extensively in

proving Langlands9 constant term formula, and computing Fourier coeûcients

of Einstein series. In Chapter 3, we introduce some basic features of Lie algebras

and Lie groups that will be used throughout the book. We ûrst discuss Lie

groups and Lie algebras over R, their discrete subgroups and then move on to

algebraic groups over Qp as well as adelic groups.

The proper discussion of automorphic forms and automorphic representa-

tions begins after these preliminaries, and we now summarise the structure of

the remainder of Part One in a little more detail, with emphasis on the central

results in each chapter.

" In Chapters 4 and 5, we introduce the general theory of automorphic forms

and automorphic representations. We start out gently by discussing how to

pass from modular forms on the upper half-plane to automorphic forms on the

adelic group SL(2,A). We then move on to the general case of arbitrary Lie
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